# BSD 3-Clause License # # Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the psutil authors nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import torch try: import cpu_adam except ImportError: raise ImportError("import cpu_adam error") def torch_adam_update( step, lr, beta1, beta2, eps, weight_decay, param, grad, exp_avg, exp_avg_sq, loss_scale, use_adamw, ): if loss_scale > 0: grad.div_(loss_scale) bias_correction1 = 1 - beta1**step bias_correction2 = 1 - beta2**step if weight_decay != 0: if use_adamw: # Perform stepweight decay param.mul_(1 - lr * weight_decay) else: grad = grad.add(param, alpha=weight_decay) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps) step_size = lr / bias_correction1 param.addcdiv_(exp_avg, denom, value=-step_size) class Test(): def __init__(self): self.opt_id = 0 def assertLess(self, data_diff, threshold, msg): assert data_diff < threshold, msg def assertTrue(self, condition, msg): assert condition, msg def check_res( self, step, lr, eps, beta1, beta2, weight_decay, shape, grad_dtype, loss_scale, use_adamw, cpu_adam_op, ): p_data = torch.rand(shape, dtype=grad_dtype) p_data_copy = p_data.clone().float() p_grad = torch.rand(shape, dtype=grad_dtype) if loss_scale > 0: p_grad.mul_(loss_scale) p_grad_copy = p_grad.clone().float() exp_avg = torch.rand(shape) exp_avg_copy = exp_avg.clone() exp_avg_sq = torch.rand(shape) exp_avg_sq_copy = exp_avg_sq.clone() cpu_adam_op.create_adam(0, lr, beta1, beta2, eps, weight_decay, use_adamw, True) cpu_adam_op.adam_update( self.opt_id, step, lr, beta1, beta2, eps, weight_decay, True, p_data.view(-1), # fp32 data p_grad.view(-1), # fp32 grad exp_avg.view(-1), exp_avg_sq.view(-1), loss_scale, ) torch_adam_update( step, lr, beta1, beta2, eps, weight_decay, p_data_copy, # fp32 data p_grad_copy, # fp32 grad exp_avg_copy, exp_avg_sq_copy, loss_scale, use_adamw, ) if loss_scale > 0: p_grad.div_(loss_scale) var = p_data_copy - p_data data_diff = torch.max(torch.abs(var)) threshold = 2e-3 if grad_dtype else 1e-4 self.assertLess( data_diff, threshold, f"p_data diff {data_diff}. failed check, step {step}, lr {lr} eps " f"{eps} beta1 {beta1} beta2 {beta2} weight_decay {weight_decay} loss_scale {loss_scale} grad_dtype {grad_dtype}", ) max_grad_diff = torch.max(torch.abs(p_grad_copy - p_grad)) self.assertTrue(max_grad_diff < threshold, f"diff {max_grad_diff}") max_exp_avg_diff = torch.max(torch.abs(exp_avg_copy - exp_avg)) self.assertTrue(max_exp_avg_diff < threshold, f"max_exp_avg_diff {max_exp_avg_diff}") max_exp_avg_sq_diff = torch.max(torch.abs(exp_avg_sq_copy - exp_avg_sq)) self.assertTrue(max_exp_avg_sq_diff < threshold, f"max_exp_avg_sq_diff {max_exp_avg_sq_diff}") def test_cpu_adam(self): lr = 0.9 eps = 1e-6 weight_decay = 0 for use_adamw in [False, True]: for shape in [(23,), (8, 24)]: for step in range(1, 2): for lr in [0.01]: for eps in [1e-8]: for beta1 in [0.9]: for beta2 in [0.999]: for weight_decay in [0.001]: for grad_dtype in [torch.half, torch.float]: for loss_scale in [-1, 2**5]: self.check_res( step, lr, eps, beta1, beta2, weight_decay, shape, grad_dtype, loss_scale, use_adamw, cpu_adam, ) def test_cpu_adam(): test_case = Test() test_case.test_cpu_adam() if __name__ == "__main__": test = Test() test.test_cpu_adam()