from functools import partial import pytest import torch import torch.nn as nn import torch.multiprocessing as mp import torch.distributed as dist import colossalai from colossalai.utils import free_port, get_current_device from colossalai.nn.layer.moe import Top1Router, UniformNoiseGenerator, MoeLayer, Experts from colossalai.core import MOE_CONTEXT from colossalai.utils.moe import sync_moe_model_param from colossalai.engine.gradient_handler import MoeGradientHandler from colossalai.testing import assert_equal_in_group BATCH_SIZE = 4 DIM = 16 CONFIG = dict() def run_test(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') expert_module = nn.Linear expert_factor = dict(in_features=DIM, out_features=DIM, device=get_current_device()) MOE_CONTEXT.setup(42) # MOE initialization noisy_func = UniformNoiseGenerator() router = Top1Router(noisy_func=noisy_func) num_experts_list = [1, 2, 4] layer_list = [] for num_experts in num_experts_list: exp = Experts(expert_module, num_experts, **expert_factor) moe_layer = MoeLayer(DIM, num_experts, router, exp) layer_list.append(moe_layer) model = nn.Sequential(*layer_list) model = model.to(get_current_device()) sync_moe_model_param(model) dist_dict = MOE_CONTEXT.parallel_info_dict assert_equal_in_group(layer_list[0].experts.experts[0].weight.data, dist_dict[1].dp_group) assert_equal_in_group(layer_list[1].experts.experts[0].weight.data, dist_dict[2].dp_group) # MoE model synchronization passed grad_handler = MoeGradientHandler(model, 0) rank = dist.get_rank() torch.cuda.manual_seed(78 + rank) data = torch.randn(BATCH_SIZE, DIM, device=get_current_device()) grad = torch.randn_like(data) MOE_CONTEXT.reset_loss() outputs = model(data) outputs.backward(grad) grad_handler.handle_gradient() assert_equal_in_group(layer_list[0].experts.experts[0].weight.grad, dist_dict[1].dp_group) assert_equal_in_group(layer_list[0].experts.experts[0].bias.grad, dist_dict[1].dp_group) assert_equal_in_group(layer_list[1].experts.experts[0].weight.grad, dist_dict[2].dp_group) assert_equal_in_group(layer_list[1].experts.experts[0].bias.grad, dist_dict[2].dp_group) # MoE grad handler test passed @pytest.mark.dist def test_grad_handler(): world_size = 4 run_func = partial(run_test, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_grad_handler()