# Comparison of Large Batch Training Optimization ## 🚀Quick Start Run with synthetic data ```bash colossalai run --nproc_per_node 4 train.py --config config.py -s ``` ## Prepare Dataset We use CIFAR10 dataset in this example. You should invoke the `donwload_cifar10.py` in the tutorial root directory or directly run the `auto_parallel_with_resnet.py`. The dataset will be downloaded to `colossalai/examples/tutorials/data` by default. If you wish to use customized directory for the dataset. You can set the environment variable `DATA` via the following command. ```bash export DATA=/path/to/data ``` You can also use synthetic data for this tutorial if you don't wish to download the `CIFAR10` dataset by adding the `-s` or `--synthetic` flag to the command. ## Run on 2*2 device mesh ```bash # run with cifar10 colossalai run --nproc_per_node 4 train.py --config config.py # run with synthetic dataset colossalai run --nproc_per_node 4 train.py --config config.py -s ```