import torch from colossalai.utils import get_current_device from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor from typing import Tuple, Union _GLOBAL_CUDA_MEM_FRACTION = 1.0 def colo_tensor_mem_usage(tensor: Union[torch.Tensor, ShardedTensor]) -> Tuple[int, int]: if isinstance(tensor, ShardedTensor): t = tensor.payload elif isinstance(tensor, torch.Tensor): t = tensor else: return 0, 0 cuda_use, cpu_use = 0, 0 mem_use = t.numel() * t.element_size() if t.device.type == 'cuda': cuda_use += mem_use elif t.device.type == 'cpu': cpu_use += mem_use return cuda_use, cpu_use def colo_set_process_memory_fraction(ratio: float) -> None: """colo_set_process_memory_fraction set how much cuda memory used on the gpu belonging to the current process. Args: ratio (float): a ratio between 0. ~ 1. """ global _GLOBAL_CUDA_MEM_FRACTION _GLOBAL_CUDA_MEM_FRACTION = ratio torch.cuda.set_per_process_memory_fraction(_GLOBAL_CUDA_MEM_FRACTION, get_current_device()) def colo_cuda_memory_capacity() -> float: """ Get cuda memory capacity of the current cuda. """ return torch.cuda.get_device_properties(get_current_device()).total_memory * _GLOBAL_CUDA_MEM_FRACTION def colo_model_data_tensor_move(src_t: Union[ShardedTensor, torch.Tensor], tgt_t: Union[ShardedTensor, torch.Tensor]) -> None: """ A colossal API for model data tensor move. The src and target tensors could be resident on both CPU and GPU. NOTE() The source tensor payload will be removed after this function. The function will record the communication volume between CPU and GPU. Args: t_src (Union[ShardedTensor, torch.Tensor]): source tensor tgt_t (Union[ShardedTensor, torch.Tensor]): target tensor """ if isinstance(src_t, ShardedTensor): src_t_payload = src_t.payload else: src_t_payload = src_t.data src_dev = src_t_payload.device if isinstance(tgt_t, ShardedTensor): tgt_t_payload = tgt_t.payload else: tgt_t_payload = tgt_t.data tgt_dev = tgt_t_payload.device tgt_t_payload.copy_(src_t_payload) # remove payload of src_t if isinstance(src_t, ShardedTensor): src_t.reset_payload(torch.tensor([], device=src_dev, dtype=src_t_payload.dtype)) else: src_t.data = torch.tensor([], device=src_dev, dtype=src_t_payload.dtype) def colo_model_data_tensor_move_inline(t: Union[ShardedTensor, torch.Tensor], target_device: torch.device, use_tracer: bool = True) -> None: """ move a tensor to the target_device Args: t (Union[ShardedTensor, torch.Tensor]): the tensor be moved """ if isinstance(t, ShardedTensor): t_payload = t.payload elif isinstance(t, torch.Tensor): t_payload = t else: raise TypeError('colo_model_data_move_to_cpu dose not accept type {type(t)}') assert isinstance(target_device, torch.device) # deal with torch.device('cpu') and torch.device('cpu:0) if t_payload.device.type == target_device.type: return t_payload.data = t_payload.data.to(target_device) def colo_model_data_move_to_cpu(t: Union[ShardedTensor, torch.Tensor]) -> None: """colo_model_data_move_to_cpu move a model data tensor from gpu to cpu Args: t (Union[ShardedTensor, torch.Tensor]): _description_ """ if isinstance(t, ShardedTensor): t_payload = t.payload elif isinstance(t, torch.Tensor): t_payload = t else: raise TypeError('colo_model_data_move_to_cpu dose not accept type {type(t)}') if t_payload.device.type == 'cpu': return # TODO() optimize the tensor moving with non-blocking t_payload.data = t_payload.data.cpu() def colo_model_tensor_clone(t: Union[ShardedTensor, torch.Tensor], target_device: torch.device) -> torch.Tensor: """ Clone a model data tensor Args: t (Union[ShardedTensor, torch.Tensor]): a model data tensor target_device (torch.device): the target device Returns: torch.Tensor: a cloned torch tensor """ t_payload = t.payload if isinstance(t, ShardedTensor) else t ret = t_payload.to(target_device) return ret