from typing import Optional import torch.nn as nn from transformers.models.gpt2.configuration_gpt2 import GPT2Config from transformers.models.gpt2.modeling_gpt2 import GPT2Model from .critic import Critic class GPTCritic(Critic): """ GPT Critic model. Args: pretrained (str): Pretrained model name or path. config (GPT2Config): Model config. checkpoint (bool): Enable gradient checkpointing. """ def __init__(self, pretrained: Optional[str] = None, config: Optional[GPT2Config] = None, checkpoint: bool = False) -> None: if pretrained is not None: model = GPT2Model.from_pretrained(pretrained) elif config is not None: model = GPT2Model(config) else: model = GPT2Model(GPT2Config()) if checkpoint: model.gradient_checkpointing_enable() value_head = nn.Linear(model.config.n_embd, 1) super().__init__(model, value_head)