from typing import Optional from transformers.models.gpt2.configuration_gpt2 import GPT2Config from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel from .actor import Actor class GPTActor(Actor): """ GPT Actor model. Args: pretrained (str): Pretrained model name or path. config (GPT2Config): Model config. checkpoint (bool): Enable gradient checkpointing. """ def __init__(self, pretrained: Optional[str] = None, config: Optional[GPT2Config] = None, checkpoint: bool = False) -> None: if pretrained is not None: model = GPT2LMHeadModel.from_pretrained(pretrained) elif config is not None: model = GPT2LMHeadModel(config) else: model = GPT2LMHeadModel(GPT2Config()) if checkpoint: model.gradient_checkpointing_enable() super().__init__(model)