from typing import Optional import torch import torch.nn as nn from transformers import BloomConfig, BloomForCausalLM, BloomModel from .reward_model import RewardModel class BLOOMRM(RewardModel): """ BLOOM Reward model. Args: pretrained (str): Pretrained model name or path. config (BloomConfig): Model config. checkpoint (bool): Enable gradient checkpointing. lora_rank (int): LoRA rank. lora_train_bias (str): LoRA bias training mode. """ def __init__(self, pretrained: str = None, config: Optional[BloomConfig] = None, checkpoint: bool = False, lora_rank: int = 0, lora_train_bias: str = 'none') -> None: if pretrained is not None: model = BloomModel.from_pretrained(pretrained) elif config is not None: model = BloomModel(config) else: model = BloomModel(BloomConfig()) if checkpoint: model.gradient_checkpointing_enable() value_head = nn.Linear(model.config.hidden_size, 1) super().__init__(model, value_head, lora_rank, lora_train_bias)