import pytest import colossalai import torch import torch.multiprocessing as mp from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils.cuda import get_current_device from colossalai.utils import free_port from colossalai.utils.model.colo_init_context import ColoInitContext from colossalai.gemini import ChunkManager from functools import partial from tests.test_tensor.common_utils import tensor_equal, set_seed, tensor_shard_equal from tests.components_to_test.registry import non_distributed_component_funcs from torch.nn.parallel import DistributedDataParallel as DDP from colossalai.nn.parallel import ZeroDDP from colossalai.nn.optimizer import HybridAdam from colossalai.zero import ZeroOptimizer from colossalai.testing import parameterize from colossalai.amp import convert_to_apex_amp from colossalai.gemini.gemini_mgr import GeminiManager from colossalai.tensor import ColoTensorSpec, ShardSpec, ComputePattern, ComputeSpec, ProcessGroup, ColoTensor from tests.test_tensor.model.test_gpt2 import init_megatron_spec def check_param_equal(model, torch_model, pg: ProcessGroup): for (n, p), (tn, tp) in zip(model.named_parameters(), torch_model.named_parameters()): if p.storage().size() > 0: assert p.dtype == torch.float16 assert tensor_shard_equal(tp.to(dtype=p.dtype, device=p.device), p, pg.tp_local_rank(), pg.tp_world_size()), f'{tp} vs {p}\n{n}:\n\t{tp.shape} vs {p.shape}' def check_grad_equal(model, torch_model, pg: ProcessGroup): for (n, p), (tn, tp) in zip(model.named_parameters(), torch_model.named_parameters()): if p.grad is not None: assert tensor_shard_equal(tp.grad.to(dtype=p.grad.dtype, device=p.grad.device), p.grad, pg.tp_local_rank(), pg.tp_world_size()), \ f'{tp.grad} vs {p.grad}\n{n}:\n\t{tp.grad.shape} vs {p.grad.shape} in {pg.rank()}' def run_fwd_bwd(model, criterion, optimizer, input_ids, attn_mask): optimizer.zero_grad() logits = model(input_ids, attn_mask) logits = logits.float() loss = criterion(logits, input_ids) optimizer.backward(loss) return logits def init_1d_row_spec(model, pg: ProcessGroup): spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) for n, p in model.named_parameters(): p.set_process_group(pg) if 'weight' in n and 'ln' not in n: p.set_tensor_spec(*spec) def init_1d_col_spec(model, pg: ProcessGroup): spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) for n, p in model.named_parameters(): p.set_process_group(pg) if 'ln' not in n and ('weight' in n or 'bias' in n): p.set_tensor_spec(*spec) @parameterize('use_chunk', [False, True]) @parameterize('use_zero', [False, True]) @parameterize('placement_policy', ['cuda', 'cpu']) def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None): set_seed(42) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() with ColoInitContext(device=get_current_device()): model = model_builder() model = model.cuda() torch_model = model_builder().cuda() for torch_p, p in zip(torch_model.parameters(), model.parameters()): torch_p.data.copy_(p.data) world_size = torch.distributed.get_world_size() # world size, dp = 2, tp =2, construct a hybrid parallelism. if world_size == 4: pg = ProcessGroup(tp_degree=2) else: pg = ProcessGroup(tp_degree=world_size) if tp_init_spec_func: tp_init_spec_func(model, pg) chunk_size = ChunkManager.search_chunk_size(model, 8192, 8) if use_chunk else None chunk_manager = ChunkManager(chunk_size, pg, enable_distributed_storage=use_zero, init_device=GeminiManager.get_default_device(placement_policy)) gemini_manager = GeminiManager(placement_policy, chunk_manager) model = ZeroDDP(model, gemini_manager) optim = HybridAdam(model.parameters(), lr=1e-3) optim = ZeroOptimizer(optim, model, initial_scale=1) amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=1) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group()) print(chunk_manager) check_param_equal(model, torch_model, pg) model.eval() torch_model.eval() set_seed(pg.dp_local_rank()) for i, (input_ids, attn_mask) in enumerate(train_dataloader): if i > 2: break input_ids_colo = ColoTensor.from_torch_tensor(input_ids, ColoTensorSpec(pg)) logits = run_fwd_bwd(model, criterion, optim, input_ids_colo, attn_mask) torch_logits = run_fwd_bwd(torch_model, criterion, torch_optim, input_ids, attn_mask) assert tensor_equal(logits, torch_logits) check_grad_equal(model, torch_model, pg) optim.step() torch_optim.step() check_param_equal(model, torch_model, pg) def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') if world_size == 4: run_gpt(tp_init_spec_func=init_megatron_spec) else: run_gpt(tp_init_spec_func=init_1d_col_spec) run_gpt(tp_init_spec_func=init_1d_row_spec) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_gpt(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_gpt(4)