import pytest import torch from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM import colossalai from colossalai.inference.config import GenerationConfig, InferenceConfig from colossalai.inference.core.engine import InferenceEngine from colossalai.inference.spec.drafter import Drafter from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn from colossalai.utils import get_current_device NUM_LAYERS = 2 MAX_LEN = 100 @pytest.mark.parametrize("spec_num", [5]) def test_drafter(spec_num: int): torch.manual_seed(123) device = get_current_device() tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") toy_config = LlamaConfig(num_hidden_layers=NUM_LAYERS) toy_config.pad_token_id = tokenizer.eos_token_id drafter_model = LlamaForCausalLM(toy_config) drafter_model = drafter_model.eval().cuda() drafter = Drafter(drafter_model, tokenizer, device=device) input_ids = torch.randint(low=5, high=1000, size=(1, 6)).to(device) out = drafter.speculate(input_ids, spec_num) past_kv_length = input_ids.size(1) + spec_num - 1 assert out.speculated_length == spec_num assert out.next_tokens.shape == (spec_num,) assert out.logits.shape == (spec_num, len(tokenizer)) assert out.past_key_values[0][0].size(2) == past_kv_length reject_num = max(0, spec_num - 1) trimmed_past_key_values = drafter.trim_kv_cache(out.past_key_values, reject_num) assert trimmed_past_key_values[0][0].size(2) == past_kv_length - reject_num def check_sd(): torch.manual_seed(123) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") # Dummy configs for testing toy_config = LlamaConfig(num_hidden_layers=NUM_LAYERS) toy_config.pad_token_id = tokenizer.eos_token_id drafter_model = LlamaForCausalLM(toy_config) drafter_model = drafter_model.eval().cuda() large_config = LlamaConfig( hidden_size=4096, intermediate_size=11008, num_attention_heads=32, num_hidden_layers=8, num_key_value_heads=32, max_position_embeddings=2048, ) large_config.pad_token_id = tokenizer.eos_token_id main_model = LlamaForCausalLM(large_config) inference_config = InferenceConfig( dtype="fp16", micro_batch_size=1, max_batch_size=1, max_input_len=128, max_output_len=128, prefill_ratio=1.2, block_size=16, ) engine = InferenceEngine(main_model, tokenizer, inference_config) engine.enable_spec_dec(drafter_model, n_spec_tokens=5) dummy_inputs = torch.randint(low=5, high=1000, size=(1, 10), dtype=torch.long, device="cuda") generation_config = GenerationConfig( pad_token_id=tokenizer.eos_token_id, max_length=MAX_LEN, eos_token_id=tokenizer.eos_token_id, ) out, out_token_ids = engine.generate( prompts_token_ids=dummy_inputs, generation_config=generation_config, return_token_ids=True ) engine.disable_spec_dec() engine.clear_spec_dec() assert not engine.use_spec_dec assert engine.drafter is None and engine.drafter_model is None assert len(out) == 1 assert len(out_token_ids) == 1 and len(out_token_ids[0]) == MAX_LEN def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host="localhost") check_sd() @rerun_if_address_is_in_use() @clear_cache_before_run() def test_spec_dec(): spawn(run_dist, nprocs=1) if __name__ == "__main__": test_drafter(spec_num=5) test_spec_dec()