import pytest import torch from packaging import version try: pass from colossalai.kernel.triton import llama_context_attn_fwd from tests.test_infer_ops.triton.kernel_utils import torch_context_attention HAS_TRITON = True except ImportError: HAS_TRITON = False print("please install triton from https://github.com/openai/triton") TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4") @pytest.mark.skipif( not TRITON_CUDA_SUPPORT or not HAS_TRITON, reason="triton requires cuda version to be higher than 11.4" ) def test_llama_context_attention(): bs = 4 head_num = 8 seq_len = 1024 head_dim = 64 query = torch.randn((bs * seq_len, head_num, head_dim), dtype=torch.float16, device="cuda") k = torch.randn((bs * seq_len, head_num, head_dim), dtype=torch.float16, device="cuda") v = torch.randn((bs * seq_len, head_num, head_dim), dtype=torch.float16, device="cuda") max_input_len = seq_len b_start = torch.zeros((bs,), device="cuda", dtype=torch.int32) b_len = torch.zeros((bs,), device="cuda", dtype=torch.int32) for i in range(bs): b_start[i] = i * seq_len b_len[i] = seq_len o = torch.randn((bs * seq_len, head_num, head_dim), dtype=torch.float16, device="cuda") llama_context_attn_fwd(query.clone(), k.clone(), v.clone(), o, b_start, b_len, max_input_len) torch_out = torch_context_attention(query.clone(), k.clone(), v.clone(), bs, seq_len, head_num, head_dim) assert torch.allclose( torch_out.cpu(), o.cpu(), rtol=1e-3, atol=1e-3 ), "outputs from triton and torch are not matched" if __name__ == "__main__": test_llama_context_attention()