from itertools import groupby from colossalai.utils.cuda import get_current_device import torch import torch.distributed as dist from colossalai.logging import get_dist_logger from torch.optim import Optimizer from .bookkeeping import ParameterStore, GradientStore, BucketStore, TensorBucket from colossalai.context import ParallelMode from colossalai.core import global_context as gpc from colossalai.amp.naive_amp._fp16_optimizer import DynamicGradScaler from colossalai.nn.optimizer import ColossalaiOptimizer from ._utils import (move_tensor, flatten, get_grad_accumulate_object, split_half_float_double, reduce_tensor, release_param_grad, calculate_global_norm_from_list, compute_norm, sync_param, has_inf_or_nan) from functools import partial class ShardedOptimizer(ColossalaiOptimizer): def __init__( self, optimizer: Optimizer, # grad scaler config initial_scale=2**32, min_scale=1, growth_factor=2, backoff_factor=0.5, growth_interval=1000, hysteresis=2, max_scale: int = 2**32, # grad clipping clip_grad_norm=2.0, verbose=False, # communication reduce_bucket_size=500000000, communication_dtype=torch.float16, overlap_communication=False, # stage 2 partition_grad=False, dp_parallel_mode=ParallelMode.DATA, mp_parallel_mode=ParallelMode.MODEL, # cpu offload cpu_offload=False): # TODO: add support for # 1. fp16 master weights # 2. contiguous gradients # 3. cpu offload # 4. support when some parameters requires_grad = False self._optimizer = optimizer self._dtype = self._optimizer.param_groups[0]['params'][0].dtype self._logger = get_dist_logger() self._verbose = verbose # stage 2 self._partition_grads = partition_grad # cpu_offload self._cpu_offload = cpu_offload # get process groups self._dp_parallel_mode = dp_parallel_mode self._mp_parallel_mode = mp_parallel_mode self._local_rank = gpc.get_local_rank(dp_parallel_mode) self._world_size = gpc.get_world_size(dp_parallel_mode) self._dp_group = gpc.get_group(dp_parallel_mode) if gpc.is_initialized(mp_parallel_mode) and gpc.get_world_size(mp_parallel_mode) > 1: self._mp_group = gpc.get_group(mp_parallel_mode) else: self._mp_group = None # fp16 and fp32 params for mixed precision training self._fp16_param_groups = dict() self._fp32_flat_param_groups_of_current_rank = dict() # communication params self._overlap_communication = overlap_communication self._reduce_bucket_size = reduce_bucket_size self._communication_dtype = communication_dtype # gradient scaler self.grad_scaler = DynamicGradScaler(initial_scale=initial_scale, min_scale=min_scale, growth_factor=growth_factor, backoff_factor=backoff_factor, growth_interval=growth_interval, hysteresis=hysteresis, max_scale=max_scale, verbose=verbose) self._found_overflow = torch.FloatTensor([0]).to(get_current_device()) # gradient clipping self._clip_grad_norm = clip_grad_norm # check argument conflict self._sanity_checks() # ParameterStore will manage the tensor buffers used for zero # it will not manage the tensors used by mixed precision training self._param_store = ParameterStore(self._dp_parallel_mode) self._grad_store = GradientStore(self._dp_parallel_mode) self._bucket_store = BucketStore(self._dp_parallel_mode) # iterate over the param group in the optimizer # partition these param groups for data parallel training # and add buffers to parameter store for future access for group_id, param_group in enumerate(self._optimizer.param_groups): params = param_group['params'] # add the fp16 params to fp16_param_groups for bookkeeping self._fp16_param_groups[group_id] = params # assign parameters to ranks # the params in the list are sorted params_per_rank = self._partition_param_list(params) # store the mapping between param to rank # each param should belong to only one rank for rank, params in enumerate(params_per_rank): self._param_store.add_fp16_param_list_by_rank_group(rank, group_id, params) for param in params: self._param_store.set_param_to_rank(param, rank) # move to cpu to make room to create the flat tensor move_tensor(params, device='cpu') # flatten the reordered tensors for rank in range(self._world_size): tensor_list = self._param_store.get_fp16_params_by_rank_group(rank, group_id) flat_tensor = flatten(tensor_list) flat_tensor = flat_tensor.cuda() self._param_store.add_flat_fp16_param_by_rank_group(rank, group_id, flat_tensor) # sync parameters for rank in range(self._world_size): flat_tensor = self._param_store.get_flat_fp16_param_by_rank_group(rank, group_id) tensor_list = self._param_store.get_fp16_params_by_rank_group(rank, group_id) sync_param(flat_tensor=flat_tensor, tensor_list=tensor_list) # create a copy of fp32 weights of the parameters for which this rank is responsible fp16_flat_current_rank = self._param_store.get_flat_fp16_param_by_rank_group(self._local_rank, group_id) fp32_flat_current_rank = fp16_flat_current_rank.clone().float().detach() device = 'cpu' if self._cpu_offload else get_current_device() fp32_flat_current_rank = fp32_flat_current_rank.to(device) fp32_flat_current_rank.requires_grad = True self._fp32_flat_param_groups_of_current_rank[group_id] = fp32_flat_current_rank # need to replace the params in the `params` field in the optimizer # so that when the optimizer calls step(), it only updates the tensors # managed by this data parallel rank param_group['params'] = [fp32_flat_current_rank] # set reduction state for param in self._fp16_param_groups[group_id]: self._param_store.set_param_reduction_state(param, False) # intialize communication stream for # communication-compuation overlapping if self._overlap_communication: self._comm_stream = torch.cuda.Stream() # reduction hook is only used if overlapping communication # or stage 2 is used # if it is stage 1 without overlapping, no hook will be attached if self._overlap_communication or self._partition_grads: self._attach_reduction_hook() self._initialize_optimizer_states() @property def loss_scale(self): return self.grad_scaler.scale @property def num_param_groups(self): return len(self._fp16_param_groups) def _partition_param_list(self, param_list): params_per_rank = [[] for _ in range(self._world_size)] numel_per_rank = [0 for _ in range(self._world_size)] # partititon the parameters in a greedy fashion sorted_params = sorted(param_list, key=lambda x: x.numel(), reverse=True) for param in sorted_params: # allocate this parameter to the rank with # the smallest numel for load balancing purpose rank_to_go = numel_per_rank.index(min(numel_per_rank)) params_per_rank[rank_to_go].append(param) numel_per_rank[rank_to_go] += param.numel() if self._verbose: self._logger.info(f'Number of elements on ranks: {numel_per_rank}', ranks=[0], parallel_mode=self._dp_parallel_mode) return params_per_rank def _initialize_optimizer_states(self): # create a dummy zero tensor which has the same shape as that of the param # set this dummpy zero tensor as grad for group_id in range(len(self._fp32_flat_param_groups_of_current_rank)): fp32_partition_param = self._fp32_flat_param_groups_of_current_rank[group_id] fp32_partition_grad = torch.zeros_like(fp32_partition_param) fp32_partition_param.grad = fp32_partition_grad # update the parameter with zero gradients for initialization of optimizer states self._optimizer.step() # remove the grad of the paramter to save memory for group_id, fp32_flat_tensor in self._fp32_flat_param_groups_of_current_rank.items(): fp32_flat_tensor.grad = None def _sanity_checks(self): assert torch.cuda.is_available(), 'CUDA is required' assert self._dtype == torch.float16, \ f'Parameters are expected to be of type torch.float16, but got {self._dtype}' ########################################################### # Backward Reduction Hook ########################################################### def _attach_reduction_hook(self): # we iterate over the fp16 params # on each param, we register a hook to its AccumulateGrad object for group_id in range(self.num_param_groups): param_group = self._fp16_param_groups[group_id] for param in param_group: if param.requires_grad: # determines the reduction destionation rank # this is only valid for stage 2 # dst_rank = None means using all-reduce # else using reduce if self._partition_grads: reduce_rank = self._param_store.get_param_rank(param) else: reduce_rank = None def _define_and_attach(param, reduce_rank): # get the AccumulateGrad object of the param itself accum_grad_obj = get_grad_accumulate_object(param) self._grad_store.add_accumulate_grad_object(accum_grad_obj) reduction_func = partial(self._reduce_and_remove_grads_by_bucket, param=param, reduce_rank=reduce_rank) # define hook # NOT IMPORTANT BUT GOOD TO KNOW: # args here is not grad, but allow_unreacable and accumulate_grad def reduce_grad_hook(*args): reduction_func() accum_grad_obj.register_hook(reduce_grad_hook) _define_and_attach(param, reduce_rank) def _reduce_and_remove_grads_by_bucket(self, param, reduce_rank=None): param_size = param.numel() # check if the bucket is full # if full, will reduce the grads already in the bucket # after reduction, the bucket will be empty if self._bucket_store.num_elements_in_bucket(reduce_rank) + param_size > self._reduce_bucket_size: self._reduce_grads_in_bucket(reduce_rank) # the param must not be reduced to ensure correctness is_param_reduced = self._param_store.is_param_reduced(param) if is_param_reduced: msg = f'Parameter of size ({param.size()}) has already been reduced, ' \ + 'duplicate reduction will lead to arithmetic incorrectness' raise RuntimeError(msg) # the param must have grad for reduction assert param.grad is not None, f'Parameter of size ({param.size()}) has None grad, cannot be reduced' self._bucket_store.add_num_elements_in_bucket(param_size, reduce_rank) self._bucket_store.add_grad(param.grad, reduce_rank) self._bucket_store.add_param(param, reduce_rank) def _reduce_grads_in_bucket(self, reduce_rank=None): # reduce grads self._reduce_grads_by_rank(reduce_rank=reduce_rank, grads=self._bucket_store.get_grad(reduce_rank=reduce_rank), bucket_size=self._bucket_store.num_elements_in_bucket(reduce_rank)) # use communication stream if overlapping # communication with computation if self._overlap_communication: stream = self._comm_stream else: stream = torch.cuda.current_stream() with torch.cuda.stream(stream): params_in_bucket = self._bucket_store.get_param(reduce_rank=reduce_rank) for param in params_in_bucket: # the is_param_reduced flag should be False showing that # this param is not reduced before calling self._reduce_grads_by_rank is_param_reduced = self._param_store.is_param_reduced(param) if is_param_reduced: msg = f'Parameter of size ({param.size()}) has been reduced, ' + \ 'duplicate reduction will lead to arithmetic incorrectness' raise RuntimeError(msg) # update the flag self._param_store.set_param_reduction_state(param, True) # if partition grads = True # we do not keep the gradient after reduction if self._partition_grads and not self._param_store.belongs_to_current_rank(param): if self._overlap_communication: # we need to keep this gradient for now as reduction may # be completed yet since it is using a different cuda stream self._param_store.add_previous_reduced_param(param) else: param.grad = None self._bucket_store.reset_by_rank(reduce_rank) def _reduce_grads_by_rank(self, reduce_rank, grads, bucket_size): grad_buckets_by_dtype = split_half_float_double(grads) for tensor_list in grad_buckets_by_dtype: self._reduce_no_retain(tensor_list=tensor_list, bucket_size=bucket_size, reduce_rank=reduce_rank) ############################## # Reduction Utility Function # ############################## def _reduce_no_retain(self, tensor_list, bucket_size, reduce_rank): param_bucket = TensorBucket(size=bucket_size) for tensor in tensor_list: param_bucket.add_to_bucket(tensor, allow_oversize=True) if param_bucket.is_full_or_oversized(): self._reduce_and_copy(bucket=param_bucket, reduce_rank=reduce_rank) param_bucket.empty() if not param_bucket.is_empty(): self._reduce_and_copy(bucket=param_bucket, reduce_rank=reduce_rank) def _reduce_and_copy(self, bucket: TensorBucket, reduce_rank): if self._overlap_communication: torch.cuda.synchronize() self._param_store.clear_grads_of_previous_reduced_params() stream = self._comm_stream else: stream = torch.cuda.current_stream() with torch.cuda.stream(stream): flat = bucket.flatten() reduced_flat = reduce_tensor(tensor=flat, dtype=self._communication_dtype, dst_rank=reduce_rank, parallel_mode=self._dp_parallel_mode) # update the reduced tensor if reduce_rank is None or reduce_rank == self._local_rank: bucket.unflatten_and_copy(reduced_flat) ################################ # torch.optim.Optimizer methods ################################ def backward(self, loss, retain_graph=True): loss = self.loss_scale * loss loss.backward(retain_graph=retain_graph) def zero_grad(self, set_to_none=True): """ Set parameter gradients to zero. If set_to_none = True, gradient will be set to None to save memory. :param set_to_none: Whether set the gradient to None. Default value is True. :type set_to_none: bool """ for group_id, param_group in self._fp16_param_groups.items(): for param in param_group: if set_to_none: param.grad = None else: if param.grad is not None: param.grad.detach() param.grad.zero_() #################### # Update Parameter # #################### def step(self, closure=None): assert closure is None, 'closure is not supported by step()' # check for overflow found_inf = self._check_overflow() self.grad_scaler.update(found_inf) # update loss scale if overflow occurs if found_inf: self._grad_store._averaged_gradients = dict() self.zero_grad() return # copy the grad of fp16 param to fp32 param single_grad_partition_groups = [] norm_groups = [] for group_id in range(self.num_param_groups): # compute norm norm_group = compute_norm(gradients=self._grad_store._averaged_gradients[group_id], params=self._param_store.get_fp16_params_by_rank_group(group_id=group_id, rank=self._local_rank), dp_group=self._dp_group, mp_group=self._mp_group) norm_groups.append(norm_group) # create flat gradient for the flat fp32 params fp16_avg_grads = self._grad_store.get_averaged_gradients_by_group(group_id) flat_fp16_avg_grads = flatten(fp16_avg_grads) dtype = self._fp32_flat_param_groups_of_current_rank[group_id].dtype flat_fp32_avg_grads = flat_fp16_avg_grads.to(dtype) param_shape = self._fp32_flat_param_groups_of_current_rank[group_id].shape assert param_shape == flat_fp32_avg_grads.shape, \ f'fp32 param and grad have different shape {param_shape} vs {flat_fp32_avg_grads.shape}' single_grad_partition_groups.append(flat_fp32_avg_grads) device = self._fp32_flat_param_groups_of_current_rank[group_id].device self._fp32_flat_param_groups_of_current_rank[group_id].grad = flat_fp32_avg_grads.to(device) self._grad_store._averaged_gradients[group_id] = [] self._grad_store._averaged_gradients[group_id] = [] # unscale and clip grads global_norm = calculate_global_norm_from_list(norm_list=norm_groups) self._unscale_and_clip_grads(single_grad_partition_groups, global_norm) # update the parameters self._optimizer.step() # release the fp32 grad release_param_grad(self._fp32_flat_param_groups_of_current_rank.values()) # update fp16 partition updated by the current rank for group_id in range(len(self._fp16_param_groups)): fp16_param = self._param_store.get_flat_fp16_param_by_rank_group(rank=self._local_rank, group_id=group_id) fp32_param = self._fp32_flat_param_groups_of_current_rank[group_id].to(fp16_param.device) fp16_param.data.copy_(fp32_param) # broadcast the updated model weights handles = [] for group_id in range(self.num_param_groups): for rank in range(self._world_size): fp16_param = self._param_store.get_flat_fp16_param_by_rank_group(rank=rank, group_id=group_id) handle = dist.broadcast(fp16_param, src=rank, group=self._dp_group, async_op=True) handles.append(handle) for handle in handles: handle.wait() ################## # FP16 Utilities # ################## def _check_overflow(self): # clear previous overflow record self._found_overflow.fill_(0.0) # check for overflow for group_id in range(len(self._fp16_param_groups)): for avg_grad in self._grad_store.get_averaged_gradients_by_group(group_id): if avg_grad is not None and has_inf_or_nan(avg_grad): self._found_overflow.fill_(1.0) break # all-reduce across dp group dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self._dp_group) # all-reduce over model parallel group if self._mp_group: dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self._mp_group) if self._found_overflow.item() > 0: return True else: return False def _unscale_and_clip_grads(self, grad_groups_flat, total_norm): # compute combined scale factor for this group combined_scale = self.loss_scale if self._clip_grad_norm > 0.: # norm is in fact norm*scale clip = ((total_norm / self.loss_scale) + 1e-6) / self._clip_grad_norm if clip > 1: combined_scale = clip * self.loss_scale for grad in grad_groups_flat: grad.data.mul_(1. / combined_scale) ############################ # Gradient Synchronization # ############################ def sync_grad(self): if not self._partition_grads: self._reduce_grad_stage1() else: # TODO: support async comm in reduce self._reduce_grad_stage2() # update param already reduced flag reduction_states = self._param_store.get_param_reduction_states() for tensor, state in reduction_states.items(): reduction_states[tensor] = False # clear reduced grads if self._overlap_communication: torch.cuda.synchronize() self._param_store.clear_grads_of_previous_reduced_params() # accumulate gradient avg_gradients = self._grad_store._averaged_gradients for group_id in range(self.num_param_groups): param_group = self._param_store.get_fp16_params_by_rank_group(self._local_rank, group_id) if group_id not in avg_gradients: avg_gradients[group_id] = [] param_idx = 0 for param in param_group: if param.grad is not None: if len(avg_gradients[group_id]) == param_idx: avg_gradients[group_id].append(param.grad) else: avg_gradients[group_id][param_idx].add_(param.grad) param_idx += 1 # the gradients needed are stored in the avg_gradients buffer # thus, can clear this self.zero_grad() def _reduce_grad_stage1(self): # if not overlapping communication (no reduction hook is attached) # we need to manually reduce these gradients if not self._overlap_communication: for group_id in range(len(self._fp16_param_groups)): param_group = self._fp16_param_groups[group_id] for param in param_group: if param.grad is not None: self._reduce_and_remove_grads_by_bucket(param) # we need to reduce the gradients # left in the communication bucket self._reduce_grads_in_bucket() def _reduce_grad_stage2(self): # when partition_grads is True, reduction hooks # are attached in the __init__ function, so we # only need to reduce the gradients # left in the communication bucket for reduce_rank in range(self._world_size): self._reduce_grads_in_bucket(reduce_rank)