import torch from transformers.modeling_attn_mask_utils import AttentionMaskConverter from colossalai.inference.modeling.layers.attention import PagedAttention from colossalai.kernel.triton import context_attention_unpadded from colossalai.utils import get_current_device from tests.test_infer.test_ops.triton.kernel_utils import generate_caches_and_block_tables_v2, torch_attn_ref try: import triton # noqa except ImportError: print("please install triton from https://github.com/openai/triton") HEAD_DIM = 32 BATCH = 16 BLOCK_SIZE = 32 SAME_LEN = True WARM_UPS = 10 REPS = 100 configs = [ triton.testing.Benchmark( x_names=["KV_LEN"], x_vals=[2**i for i in range(8, 13)], # x_vals=[x for x in range(256, 8192, 256)], line_arg="provider", line_vals=["torch", "triton"], line_names=["Torch", "Triton"], styles=[("red", "-"), ("blue", "-")], ylabel="ms", plot_name=f"context_attn-block_size-{BLOCK_SIZE}-batch{BATCH}", args={"bsz": BATCH, "block_size": BLOCK_SIZE, "same_context_len": SAME_LEN, "kv_group_num": 1}, ) ] @triton.testing.perf_report(configs) def bench_kernel( bsz, KV_LEN, provider, block_size: int, kv_group_num: int, same_context_len: bool, ): num_attn_heads = 16 max_num_blocks_per_seq = triton.cdiv(KV_LEN, block_size) max_seq_len = block_size * max_num_blocks_per_seq num_kv_heads = num_attn_heads // kv_group_num assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads." dtype = torch.float16 device = get_current_device() if same_context_len: context_lengths = torch.tensor([max_seq_len for _ in range(bsz)], dtype=torch.int32, device=device) else: context_lengths = torch.randint(low=1, high=max_seq_len, size=(bsz,), dtype=torch.int32, device=device) num_tokens = torch.sum(context_lengths).item() qkv_size = (num_tokens, num_attn_heads + 2 * num_kv_heads, HEAD_DIM) qkv_unpad = torch.empty(size=qkv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5) q_unpad, k_unpad, v_unpad = torch.split(qkv_unpad, [num_attn_heads, num_kv_heads, num_kv_heads], dim=-2) q_unpad = q_unpad.contiguous() k_cache_ref, v_cache_ref, block_tables = generate_caches_and_block_tables_v2( k_unpad, v_unpad, context_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device ) block_tables = block_tables.to(device=device) quantiles = [0.5, 0.2, 0.8] if provider == "torch": q_padded = PagedAttention.pad_and_reshape(q_unpad, context_lengths, max_seq_len, num_attn_heads, HEAD_DIM) k_padded = PagedAttention.pad_and_reshape(k_unpad, context_lengths, max_seq_len, num_kv_heads, HEAD_DIM) v_padded = PagedAttention.pad_and_reshape(v_unpad, context_lengths, max_seq_len, num_kv_heads, HEAD_DIM) q_padded, k_padded, v_padded = ( q_padded.to(device=device), k_padded.to(device=device), v_padded.to(device=device), ) q_padded = q_padded.transpose(1, 2) k_padded = PagedAttention.repeat_kv(k_padded.transpose(1, 2), kv_group_num) v_padded = PagedAttention.repeat_kv(v_padded.transpose(1, 2), kv_group_num) # This benchmark ignores the padding mask. *Only* use the-same-length inputs for benchmarkings attn_mask = AttentionMaskConverter._make_causal_mask( (bsz, max_seq_len), q_padded.dtype, q_padded.device, past_key_values_length=0 ) attn_mask = attn_mask.to(device=q_padded.device) fn = lambda: torch_attn_ref( q_padded, k_padded, v_padded, attn_mask, bsz, max_seq_len, max_seq_len, num_attn_heads, num_kv_heads, HEAD_DIM, ) ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles) if provider == "triton": k_cache_triton = torch.zeros_like(k_cache_ref) v_cache_triton = torch.zeros_like(v_cache_ref) fn = lambda: context_attention_unpadded( q_unpad, k_unpad, v_unpad, k_cache_triton, v_cache_triton, context_lengths, block_tables, block_size ) ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles) return ms, min_ms, max_ms if __name__ == "__main__": bench_kernel.run(save_path=".", print_data=True)