import torch from colossalai.context.parallel_mode import ParallelMode from colossalai.tensor import ColoTensor from functools import partial import colossalai import pytest import torch import torch.multiprocessing as mp import torch.nn.functional as F from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.core import global_context as gpc from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction, dist_spec, DistSpecManager def init_1d_row(weight, bias): spec = TensorSpec( dist_spec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]), [ParallelAction(priority=1, compute_pattern=ComputePattern.TP1D, parallel_mode=ParallelMode.PARALLEL_1D)]) with DistSpecManager.no_grad(): weight.set_spec(spec) def check_grad_1d_row(model: torch.nn.Module, weight, bias): rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D) size = gpc.get_world_size(ParallelMode.PARALLEL_1D) assert torch.allclose(model.weight.grad.chunk(size, -1)[rank], weight.grad) assert torch.allclose(model.bias.grad, bias.grad) def init_1d_col(weight, bias): spec = TensorSpec( dist_spec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]), [ParallelAction(priority=1, compute_pattern=ComputePattern.TP1D, parallel_mode=ParallelMode.PARALLEL_1D)]) with DistSpecManager.no_grad(): weight.set_spec(spec) bias.set_spec(spec) def check_grad_1d_col(model: torch.nn.Module, weight, bias): rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D) size = gpc.get_world_size(ParallelMode.PARALLEL_1D) assert torch.allclose(model.weight.grad.chunk(size, 0)[rank], weight.grad) assert torch.allclose(model.bias.grad.chunk(size, 0)[rank], bias.grad) def run_with_spec(spec_init_func, check_grad_func): model = torch.nn.Linear(4, 8).cuda() weight = ColoTensor.init_from_torch_tensor(torch.nn.Parameter(model.weight.detach())) bias = ColoTensor.init_from_torch_tensor(torch.nn.Parameter(model.bias.detach())) spec_init_func(weight, bias) x = torch.rand(2, 4).cuda() out = model(x) colo_out = F.linear(x, weight, bias) assert torch.allclose(out, colo_out) grad = torch.rand_like(out) out.backward(grad) colo_out.backward(grad) check_grad_func(model, weight, bias) def run_dist(rank, world_size, port): config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_with_spec(init_1d_row, check_grad_1d_row) run_with_spec(init_1d_col, check_grad_1d_col) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_linear_1d(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_linear_1d(4)