#!/usr/bin/env python # -*- encoding: utf-8 -*- import argparse import os import pprint from pathlib import Path from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union import torch import torch.nn as nn from torch.nn.modules.loss import _Loss from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim.lr_scheduler import _LRScheduler from torch.optim.optimizer import Optimizer from torch.utils.data import DataLoader from colossalai.core import global_context as gpc from colossalai.context.moe_context import MOE_CONTEXT from colossalai.logging import get_dist_logger from colossalai.engine.schedule import NonPipelineSchedule, PipelineSchedule, InterleavedPipelineSchedule, get_tensor_shape from colossalai.engine import Engine from colossalai.engine.ophooks import BaseOpHook from colossalai.utils import (get_current_device, is_using_ddp, is_using_pp, is_using_sequence, sync_model_param) from colossalai.utils.moe import sync_moe_model_param from colossalai.amp import AMP_TYPE, convert_to_amp from colossalai.amp.naive_amp import NaiveAMPModel from colossalai.builder.builder import build_gradient_handler from colossalai.context import Config, ConfigException, ParallelMode from colossalai.engine.gradient_accumulation import accumulate_gradient from colossalai.nn.optimizer.colossalai_optimizer import ColossalaiOptimizer from colossalai.zero import convert_to_zero_v2 from colossalai.zero.sharded_optim.sharded_optim_v2 import ShardedOptimizerV2 def get_default_parser(): """Reads user command line and uses an argument parser to parse the input arguments. Input arguments include configuration, host, port, world size, local rank, backend for torch.distributed. Returns: Namespace: Returns the parser with the default arguments, the user may add customized arguments into this parser. """ parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, help='path to the config file') parser.add_argument('--host', type=str, help='the master address for distributed training') parser.add_argument('--port', type=int, help='the master port for distributed training') parser.add_argument('--world_size', type=int, help='world size for distributed training') parser.add_argument('--rank', type=int, help='rank for the default process group') parser.add_argument('--local_rank', type=int, help='local rank on the node') parser.add_argument('--backend', type=str, default='nccl', help='backend for distributed communication') return parser def launch(config: Union[str, Path, Config, Dict], rank: int, world_size: int, host: str, port: int, backend: str = 'nccl', local_rank: int = None, seed: int = 1024, verbose: bool = True): """This function first parses the configuration arguments, using :func:`parse_args()` in case one of the input arguments are not given. Then initialize and set distributed environment by calling global_context's functions. Args: config (Union[str, dict, Config]): Config file or config file path are both acceptable rank (int): Rank for the default process group world_size (int): World size of the default process group host (str): The master address for distributed training port (str): The master port for distributed training backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl`` local_rank (int, optional): Rank for the process on the node and is used to set the default CUDA device, defaults to None. If local_rank = None, the default device ordinal will be calculated automatically. seed (int, optional): Specified random seed for every process. Defaults to 1024. verbose (bool, optional): Whether to print logs. Defaults to True. Raises: Exception: Raise exception when config type is wrong """ gpc.verbose = verbose # set config assert isinstance(config, (Config, str, Path, dict)), \ f'expected argument config to be Config, str or Path, but got {type(config)}' if not isinstance(config, Config) and isinstance(config, dict): config = Config(config) if isinstance(config, (str, Path)): config = Config.from_file(config) gpc.load_config(config) # init default process group gpc.init_global_dist(rank, world_size, backend, host, port) # init process groups for different parallel modes from config gpc.init_parallel_groups() # set cuda device if torch.cuda.is_available(): # if local rank is not given, calculate automatically gpc.set_device(local_rank) # set the number of processes running on the same node gpc.detect_num_processes_on_current_node() gpc.set_seed(seed) if verbose: logger = get_dist_logger() logger.info( f'Distributed environment is initialized, ' f'data parallel size: {gpc.data_parallel_size}, pipeline parallel size: {gpc.pipeline_parallel_size}, ' f'tensor parallel size: {gpc.tensor_parallel_size}', ranks=[0]) def launch_from_slurm(config: Union[str, Path, Config, Dict], host: str, port: int, backend: str = 'nccl', seed: int = 1024, verbose: bool = True): """A wrapper for colossalai.launch for SLURM launcher by reading rank and world size from the environment variables set by SLURM Args: config (Union[str, dict, Config]): Config file or config file path are both acceptable host (str): The master address for distributed training port (str): The master port for distributed training backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl`` seed (int, optional): Specified random seed for every process. Defaults to 1024. verbose (bool, optional): Whether to print logs. Defaults to True. """ try: rank = int(os.environ['SLURM_PROCID']) world_size = int(os.environ['SLURM_NPROCS']) except KeyError as e: raise RuntimeError( f"Could not find {e} in the SLURM environment, visit https://www.colossalai.org/ for more information on launching with SLURM" ) launch(config=config, rank=rank, world_size=world_size, host=host, port=port, backend=backend, seed=seed, verbose=verbose) def launch_from_openmpi(config: Union[str, Path, Config, Dict], host: str, port: int, backend: str = 'nccl', seed: int = 1024, verbose: bool = True): """A wrapper for colossalai.launch for OpenMPI launcher by reading rank and world size from the environment variables set by OpenMPI Args: config (Union[str, dict, Config]): Config file or config file path are both acceptable host (str): The master address for distributed training port (str): The master port for distributed training backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl`` seed (int, optional): Specified random seed for every process. Defaults to 1024. verbose (bool, optional): Whether to print logs. Defaults to True. """ try: rank = int(os.environ['OMPI_COMM_WORLD_RANK']) local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) except KeyError as e: raise RuntimeError( f"Could not find {e} in the OpenMPI environment, visit https://www.colossalai.org/ for more information on launching with OpenMPI" ) launch(config=config, local_rank=local_rank, rank=rank, world_size=world_size, host=host, port=port, backend=backend, seed=seed, verbose=verbose) def launch_from_torch(config: Union[str, Path, Config, Dict], backend: str = 'nccl', seed: int = 1024, verbose: bool = True): """A wrapper for colossalai.launch for torchrun or torch.distributed.launch by reading rank and world size from the environment variables set by PyTorch Args: config (Union[str, dict, Config]): Config file or config file path are both acceptable backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl`` seed (int, optional): Specified random seed for every process. Defaults to 1024. verbose (bool, optional): Whether to print logs. Defaults to True. """ try: rank = int(os.environ['RANK']) local_rank = int(os.environ['LOCAL_RANK']) world_size = int(os.environ['WORLD_SIZE']) host = os.environ['MASTER_ADDR'] port = int(os.environ['MASTER_PORT']) except KeyError as e: raise RuntimeError( f"Could not find {e} in the torch environment, visit https://www.colossalai.org/ for more information on launching with torch" ) launch(config=config, local_rank=local_rank, rank=rank, world_size=world_size, host=host, port=port, backend=backend, seed=seed, verbose=verbose) def initialize(model: nn.Module, optimizer: Optimizer, criterion: Optional[_Loss] = None, train_dataloader: Optional[Iterable] = None, test_dataloader: Optional[Iterable] = None, lr_scheduler: Optional[_LRScheduler] = None, ophooks: Optional[List[BaseOpHook]] = None, verbose: bool = True) -> Tuple[Engine, DataLoader, DataLoader, _LRScheduler]: """Core function to wrap the essential training components with our functionality based on the config which is loaded into gpc.config. Args: model (:class:`torch.nn.Module` or Callbale): Your model instance or a function to build the model. optimizer (:class:`torch.optim.optimizer.Optimizer` or :class:`Type[torch.optim.optimizer]`): Your optimizer instance. criterion (:class:`torch.nn.modules.loss._Loss`, optional): Your criterion instance. train_dataloader (:class:`torch.utils.data.DataLoader`, optional): Dataloader for training. test_dataloader (:class:`torch.utils.data.DataLoader`, optional): Dataloader for testing. lr_scheduler (:class:`torch.nn.lr_scheduler._LRScheduler`, optional): Your lr scheduler instance, optional. verbose (bool, optional): Whether to print logs. Returns: Tuple (engine, train_dataloader, test_dataloader, lr_scheduler): A tuple of ``(engine, train_dataloader, test_dataloader, lr_scheduler)`` where only ``engine`` could not be None. """ # get logger logger = get_dist_logger() gpc.verbose = verbose # get config from gpc config = gpc.config # print config if verbose: logger.info( f"\n========== Your Config ========\n" f"{pprint.pformat(gpc.config)}\n" f"================================\n", ranks=[0]) # cudnn cudnn_benchmark = config.get('cudnn_benchmark', True) cudnn_deterministic = config.get('cudnn_deterministic', False) torch.backends.cudnn.benchmark = cudnn_benchmark torch.backends.cudnn.deterministic = cudnn_deterministic if verbose: logger.info(f"cuDNN benchmark = {cudnn_benchmark}, deterministic = {cudnn_deterministic}", ranks=[0]) # zero use_zero = hasattr(gpc.config, 'zero') if use_zero: zero_cfg = gpc.config.get('zero', None) if zero_cfg is not None: cfg_ = zero_cfg.copy() else: cfg_ = {} optimizer_config = zero_cfg.get('optimizer_config', None) model_config = zero_cfg.get('model_config', None) model, optimizer = convert_to_zero_v2(model, optimizer, model_config=model_config, optimizer_config=optimizer_config) logger.info("Initializing ZeRO model and optimizer finished!", ranks=[0]) else: if isinstance(model, nn.Module): # first sync model across dp ranks model.to(get_current_device()) elif isinstance(model, Callable): model = model().to(get_current_device()) # optimizer maybe a optimizer_cls logger.warning("Initializing an non ZeRO model with optimizer class") if isinstance(optimizer, Callable): optimizer = optimizer(model.parameters()) if not use_zero: if is_using_sequence(): sync_model_param(model, ParallelMode.SEQUENCE_DP) elif MOE_CONTEXT.is_initialized: sync_moe_model_param(model) elif is_using_ddp(): sync_model_param(model, ParallelMode.DATA) else: logger.warning( "The parameters of models is not automatically synchronized.\n" "Please make sure that all parameters are the same in data parallel group.", ranks=[0]) # check amp and zero fp16_cfg = gpc.config.get('fp16', None) if fp16_cfg is not None and fp16_cfg.mode is not None and use_zero: raise ConfigException( "It is not allowed to set fp16 and zero configuration in your config file at the same time") # clip grad norm clip_grad_norm = gpc.config.get('clip_grad_norm', 0.0) # initialize amp amp_mode = None if fp16_cfg is not None and fp16_cfg.mode is not None: cfg_ = fp16_cfg.copy() amp_mode = cfg_.pop('mode') if is_using_pp(): assert amp_mode == AMP_TYPE.NAIVE, 'Pipeline only support NaiveAMP currently' if amp_mode == AMP_TYPE.NAIVE: cfg_['clip_grad_norm'] = clip_grad_norm model, optimizer, criterion = convert_to_amp(model=model, optimizer=optimizer, criterion=criterion, mode=amp_mode, amp_config=cfg_) # gradient handler gradient_handler_cfg = gpc.config.get('gradient_handler', None) if gradient_handler_cfg is None: # if gradient handler is not specified in the configuration file, # check in the following order # 1. if optimizer is ZERO, then use zero grad handler # 2. if dp size is larger than 1 and pipeline is not used, use pytorch ddp # 3. if using pipeline and dp size larger than 1, use data parallel grad handler if isinstance(optimizer, ShardedOptimizerV2): gradient_handler_cfg = [dict(type='ZeROGradientHandler')] if verbose: logger.info( "Training with zero is detected, ZeROGradientHandler is automatically " "added even though not specified in the configuration", ranks=[0]) elif is_using_ddp() and MOE_CONTEXT.is_initialized: gradient_handler_cfg = [dict(type='MoeGradientHandler')] if verbose: logger.info( "Data parallel training is detected with moe parallel, MoeGradientHandler is automatically " "added even though not specified in the configuration", ranks=[0]) elif is_using_sequence(): model = DDP(model, process_group=gpc.get_group(ParallelMode.SEQUENCE_DP), device_ids=[torch.cuda.current_device()]) if verbose: logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Sequence Parallelism', ranks=[0]) elif is_using_ddp() and not is_using_pp() and amp_mode != AMP_TYPE.NAIVE: model = DDP(model, process_group=gpc.get_group(ParallelMode.DATA), device_ids=[torch.cuda.current_device()]) if verbose: logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Data Parallelism', ranks=[0]) elif is_using_ddp(): gradient_handler_cfg = [dict(type='DataParallelGradientHandler')] if verbose: logger.info( "Data parallel training is detected when using pipeline parallel, " "DataParallelGradientHandler is automatically " "added even though not specified in the configuration", ranks=[0]) # add pipeline parallel gradient handler, if pipeline shared module is detected for param in model.parameters(): if getattr(param, 'pipeline_shared_module_pg', None) is not None: if gradient_handler_cfg is None: gradient_handler_cfg = [dict(type='PipelineSharedModuleGradientHandler')] else: gradient_handler_cfg.append(dict(type='PipelineSharedModuleGradientHandler')) if verbose: logger.info( "pipeline_shared_module is detected, PipelineSharedModuleGradientHandler is automatically " "added even though not specified in the configuration", ranks=[0]) break else: if not isinstance(gradient_handler_cfg, list): raise ConfigException( f"expected gradient_handler in the configuration file to be a list but got {type(gradient_handler_cfg)}" ) # turn off sync buffer for NaiveAMPModel if using torch DDP and NaiveAMPModel at the same time # to avoid duplicated buffer synchronization if isinstance(model, DDP) and isinstance(model.module, NaiveAMPModel): model.module.sync_buffer = False # initialize schedule for engine if is_using_pp(): tensor_shape = get_tensor_shape() use_interleaved = hasattr(gpc.config, 'model') and hasattr(gpc.config.model, 'num_chunks') if gpc.is_initialized(ParallelMode.PARALLEL_1D): scatter_gather = True else: scatter_gather = False if use_interleaved: if isinstance(model, nn.Sequential): model = nn.ModuleList([model]) schedule = InterleavedPipelineSchedule(gpc.config.NUM_MICRO_BATCHES, gpc.config.model.num_chunks, tensor_shape=tensor_shape, scatter_gather_tensors=scatter_gather) else: schedule = PipelineSchedule(gpc.config.NUM_MICRO_BATCHES, tensor_shape=tensor_shape, scatter_gather_tensors=scatter_gather) else: schedule = NonPipelineSchedule() if gradient_handler_cfg is None: gradient_handlers = None if verbose and not isinstance(model, DDP): logger.warning( "No PyTorch DDP or gradient handler is set up, please make sure you do not need " "to all-reduce the gradients after a training step.", ranks=[0]) else: gradient_handlers = [build_gradient_handler(cfg, model, optimizer) for cfg in gradient_handler_cfg] # check if optimizer is ColossalaiOptimizer if not isinstance(optimizer, (ColossalaiOptimizer, ShardedOptimizerV2)): optimizer = ColossalaiOptimizer(optim=optimizer) # gradient accumulation grad_accum_size = gpc.config.get('gradient_accumulation', None) if grad_accum_size is not None: optimizer, train_dataloader, gradient_handlers, lr_scheduler = accumulate_gradient( model=model, optimizer=optimizer, dataloader=train_dataloader, accumulate_size=grad_accum_size, gradient_handlers=gradient_handlers, lr_scheduler=lr_scheduler) engine = Engine(model=model, optimizer=optimizer, criterion=criterion, gradient_handlers=gradient_handlers, clip_grad_norm=clip_grad_norm, ophook_list=ophooks, schedule=schedule) return engine, train_dataloader, test_dataloader, lr_scheduler