import os import re import subprocess import warnings from typing import List def print_rank_0(message: str) -> None: """ Print on only one process to avoid spamming. """ try: import torch.distributed as dist if not dist.is_initialized(): is_main_rank = True else: is_main_rank = dist.get_rank() == 0 except ImportError: is_main_rank = True if is_main_rank: print(message) def get_cuda_version_in_pytorch() -> List[int]: """ This function returns the CUDA version in the PyTorch build. Returns: The CUDA version required by PyTorch, in the form of tuple (major, minor). """ import torch try: torch_cuda_major = torch.version.cuda.split(".")[0] torch_cuda_minor = torch.version.cuda.split(".")[1] except: raise ValueError( "[extension] Cannot retrive the CUDA version in the PyTorch binary given by torch.version.cuda") return torch_cuda_major, torch_cuda_minor def get_cuda_bare_metal_version(cuda_dir) -> List[int]: """ Get the System CUDA version from nvcc. Args: cuda_dir (str): the directory for CUDA Toolkit. Returns: The CUDA version required by PyTorch, in the form of tuple (major, minor). """ nvcc_path = os.path.join(cuda_dir, 'bin/nvcc') if cuda_dir is None: raise ValueError( f"[extension] The argument cuda_dir is None, but expected to be a string. Please make sure your have exported the environment variable CUDA_HOME correctly." ) # check for nvcc path if not os.path.exists(nvcc_path): raise FileNotFoundError( f"[extension] The nvcc compiler is not found in {nvcc_path}, please make sure you have set the correct value for CUDA_HOME." ) # parse the nvcc -v output to obtain the system cuda version try: raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 release = output[release_idx].split(".") bare_metal_major = release[0] bare_metal_minor = release[1][0] except: raise ValueError( f"[extension] Failed to parse the nvcc output to obtain the system CUDA bare metal version. The output for 'nvcc -v' is \n{raw_output}" ) return bare_metal_major, bare_metal_minor def check_system_pytorch_cuda_match(cuda_dir): bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir) torch_cuda_major, torch_cuda_minor = get_cuda_version_in_pytorch() if bare_metal_major != torch_cuda_major: raise Exception( f'[extension] Failed to build PyTorch extension because the detected CUDA version ({bare_metal_major}.{bare_metal_minor}) ' f'mismatches the version that was used to compile PyTorch ({torch_cuda_major}.{torch_cuda_minor}).' 'Please make sure you have set the CUDA_HOME correctly and installed the correct PyTorch in https://pytorch.org/get-started/locally/ .' ) print(bare_metal_minor != torch_cuda_minor) if bare_metal_minor != torch_cuda_minor: warnings.warn( f"[extension] The CUDA version on the system ({bare_metal_major}.{bare_metal_minor}) does not match with the version ({torch_cuda_major}.{torch_cuda_minor}) torch was compiled with. " "The mismatch is found in the minor version. As the APIs are compatible, we will allow compilation to proceed. " "If you encounter any issue when using the built kernel, please try to build it again with fully matched CUDA versions" ) return True def get_pytorch_version() -> List[int]: """ This functions finds the PyTorch version. Returns: A tuple of integers in the form of (major, minor, patch). """ import torch torch_version = torch.__version__.split('+')[0] TORCH_MAJOR = int(torch_version.split('.')[0]) TORCH_MINOR = int(torch_version.split('.')[1]) TORCH_PATCH = int(torch_version.split('.')[2]) return TORCH_MAJOR, TORCH_MINOR, TORCH_PATCH def check_pytorch_version(min_major_version, min_minor_version) -> bool: """ Compare the current PyTorch version with the minium required version. Args: min_major_version (int): the minimum major version of PyTorch required min_minor_version (int): the minimum minor version of PyTorch required Returns: A boolean value. The value is True if the current pytorch version is acceptable and False otherwise. """ # get pytorch version torch_major, torch_minor, _ = get_pytorch_version() # if the if torch_major < min_major_version or (torch_major == min_major_version and torch_minor < min_minor_version): raise RuntimeError( f"[extension] Colossal-AI requires Pytorch {min_major_version}.{min_minor_version} or newer.\n" "The latest stable release can be obtained from https://pytorch.org/get-started/locally/") def check_cuda_availability(): """ Check if CUDA is available on the system. Returns: A boolean value. True if CUDA is available and False otherwise. """ import torch return torch.cuda.is_available() def set_cuda_arch_list(cuda_dir): """ This function sets the PyTorch TORCH_CUDA_ARCH_LIST variable for ahead-of-time extension compilation. Ahead-of-time compilation occurs when CUDA_EXT=1 is set when running 'pip install'. """ cuda_available = check_cuda_availability() # we only need to set this when CUDA is not available for cross-compilation if not cuda_available: warnings.warn( '\n[extension] PyTorch did not find available GPUs on this system.\n' 'If your intention is to cross-compile, this is not an error.\n' 'By default, Colossal-AI will cross-compile for \n' '1. Pascal (compute capabilities 6.0, 6.1, 6.2),\n' '2. Volta (compute capability 7.0)\n' '3. Turing (compute capability 7.5),\n' '4. Ampere (compute capability 8.0, 8.6)if the CUDA version is >= 11.0\n' '\nIf you wish to cross-compile for a single specific architecture,\n' 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n') if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None: bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir) arch_list = ['6.0', '6.1', '6.2', '7.0', '7.5'] if int(bare_metal_major) == 11: if int(bare_metal_minor) == 0: arch_list.append('8.0') else: arch_list.append('8.0') arch_list.append('8.6') arch_list_str = ';'.join(arch_list) os.environ["TORCH_CUDA_ARCH_LIST"] = arch_list_str return False return True def get_cuda_cc_flag() -> List[str]: """ This function produces the cc flags for your GPU arch Returns: The CUDA cc flags for compilation. """ # only import torch when needed # this is to avoid importing torch when building on a machine without torch pre-installed # one case is to build wheel for pypi release import torch cc_flag = [] for arch in torch.cuda.get_arch_list(): res = re.search(r'sm_(\d+)', arch) if res: arch_cap = res[1] if int(arch_cap) >= 60: cc_flag.extend(['-gencode', f'arch=compute_{arch_cap},code={arch}']) return cc_flag def append_nvcc_threads(nvcc_extra_args: List[str]) -> List[str]: """ This function appends the threads flag to your nvcc args. Returns: The nvcc compilation flags including the threads flag. """ from torch.utils.cpp_extension import CUDA_HOME bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2: return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args