import torch from rpc_test_utils import RpcTestModel, parse_args, rpc_run from torch import autograd, nn from torch.optim import Optimizer from colossalai.legacy.pipeline.rpc._pipeline_schedule import OneFOneBPipelineEngine from colossalai.testing import assert_close # global variable for model created feat_num = 100 h = 100 def partition(pp_rank: int, chunk: int, stage_num: int): torch.manual_seed(1024) partition = RpcTestModel(pp_rank, stage_num, feat_num, h) return partition def run_master(args): torch.manual_seed(100) device = args.device stage_num = args.world_size chunk = args.chunk actual_stage_num = stage_num * chunk use_checkpoint = args.use_checkpoint num_microbatches = args.num_microbatches optimizer_class = globals()[args.optimizer] lr = 1e-3 sample_num = 1024 batch_size = 1024 assert sample_num % batch_size == 0 input_sample = torch.randn((sample_num, feat_num), device=device) engine = OneFOneBPipelineEngine( partition_fn=partition, stage_num=stage_num, num_microbatches=num_microbatches, device=device, chunk=chunk, checkpoint=use_checkpoint, ) engine.initialize_optimizer(optimizer_class, lr=lr) _ = engine.forward_backward(input_sample) cuda_rpc_result = [] single_result = [] actual_stage_num = engine._get_actual_stage_num() # compute parameters after updating in cuda rpc parameters = engine.remote_parameters() for stage_id in range(actual_stage_num): for p in parameters[stage_id]: cuda_rpc_result.append(p) # compute forward result and backward grad of parameters just in rank_0 test_model = nn.Sequential( *[partition(pp_rank, chunk, actual_stage_num) for pp_rank in range(actual_stage_num)] ).to(device) optimizer: Optimizer = optimizer_class(test_model.parameters(), lr=lr) input_sample = input_sample.requires_grad_() out_val = test_model(input_sample).sum() autograd.backward(out_val) optimizer.step() optimizer.zero_grad() for p in test_model.parameters(): single_result.append(p) assert len(cuda_rpc_result) == len(single_result) for r_c, r_s in zip(cuda_rpc_result, single_result): assert_close(r_c, r_s, 0.001, 0.001) if __name__ == "__main__": args = parse_args() rpc_run(args, run_master)