import torch from colossalai.fx import ColoTracer from colossalai.fx.passes.utils import assign_bfs_level_to_nodes, get_leaf, get_top from colossalai.testing import clear_cache_before_run class MLP(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.linear1 = torch.nn.Linear(dim, dim) self.linear2 = torch.nn.Linear(dim, dim) self.linear3 = torch.nn.Linear(dim, dim) self.linear4 = torch.nn.Linear(dim, dim) self.linear5 = torch.nn.Linear(dim, dim) def forward(self, x): l1 = self.linear1(x) l2 = self.linear2(x) l3 = self.linear3(l1) l4 = self.linear4(l2) l5 = self.linear5(l3) return l4, l5 @clear_cache_before_run() def test_graph_manipulation(): model = MLP(4) tracer = ColoTracer() graph = tracer.trace(model) nodes = list(graph.nodes) x, l1, l2, l3, l4, l5, output = nodes leaf_nodes = set(get_leaf(graph)) top_nodes = set(get_top(graph)) compare_dict = {x: None, l1: 0, l2: 0, l3: 1, l4: 1, l5: 2, output: None} assign_bfs_level_to_nodes(graph) assert leaf_nodes == set([l4, l5]) assert top_nodes == set([l1, l2]) for node in graph.nodes: if node.op in ("placeholder", "output"): assert not hasattr(node, "bfs_level") else: assert node.bfs_level == compare_dict[node] if __name__ == "__main__": test_graph_manipulation()