import torch import torch.distributed as dist import torch.nn.functional as F from torch.distributed.distributed_c10d import _get_default_group from torch.testing import assert_close from colossalai import launch from colossalai.accelerator import get_accelerator from colossalai.quantization.fp8 import all_gather_into_tensor_flat_fp8 from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn @parameterize("shape", [(3, 7), (2, 1), (1, 2), (2, 2), (4, 2), (5,), (4,), (2,)]) @parameterize("dtype", [torch.bfloat16, torch.float16]) @parameterize("async_op", [True, False]) def check_4gpu(shape, dtype, async_op): world_size = dist.get_world_size() rank = dist.get_rank() x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device()) flat_padded_x = x.view(-1) if flat_padded_x.size(0) % world_size != 0: pad_size = world_size - flat_padded_x.size(0) % world_size flat_padded_x = F.pad(flat_padded_x, (0, pad_size)) output = torch.empty_like(flat_padded_x) chunk = flat_padded_x.chunk(world_size)[rank].clone() handle = all_gather_into_tensor_flat_fp8(output, chunk, x.shape, group=_get_default_group(), async_op=async_op) if async_op: handle.wait() assert_close(output[: x.numel()], x.view(-1), rtol=0.1, atol=0.1) def run_dist(rank, world_size, port): launch(rank=rank, world_size=world_size, port=port, host="localhost") check_4gpu() @rerun_if_address_is_in_use() def test_all_gather_flat(): spawn(run_dist, 4) if __name__ == "__main__": test_all_gather_flat()