import os from typing import Any, Optional, Tuple import numpy as np import torch import torch.distributed as dist import torch.nn.functional as F from packaging.version import Version from torch.distributed import ReduceOp SUPPORT_TORCH_COMPILE = Version(torch.__version__) >= Version("2.4.0") SCALE_BYTES = 4 class Handle: def __init__(self, handles=[], remain_ops=None) -> None: self.handles = handles self.remain_ops = remain_ops def wait(self): for handle in self.handles: handle.wait() if self.remain_ops: self.remain_ops() def process_group_is_intranode(pg): if pg is None: from torch.distributed.distributed_c10d import _get_default_group pg = _get_default_group() local_world_size = None for var in ["LOCAL_WORLD_SIZE", "OMPI_COMM_WORLD_LOCAL_SIZE", "SLURM_TASKS_PER_NODE"]: if var in os.environ: local_world_size = int(os.environ["LOCAL_WORLD_SIZE"]) if local_world_size is None: local_world_size = torch.cuda.device_count() group_ranks = dist.get_process_group_ranks(pg) group_ranks_node_ids = [rank // local_world_size for rank in group_ranks] return min(group_ranks_node_ids) == max(group_ranks_node_ids) def cast_to_fp8( inp: torch.Tensor, fp8_format="e4m3", per_channel_scale=False, out=None ) -> Tuple[torch.Tensor, torch.Tensor]: r""" casting torch Tensor into specified fp8 tensor with per-channel scaling or per-tensor scaling. Args: inp: input torch Tensor, should be in torch.FloatTensor, torch.HalfTensor, torch.BFloat16Tensor. scale: scaling factor for fp8 casting. If it is None, then it is computed automatically. Per-channel scaling is applied if input tensor is 2 dimension, otherwise, per-tensor scaling is applied. fp8_format: e4m3 or e5m2 Returns: Tuples: A tuple (fp8_tensor, scale) """ if inp.dtype not in [torch.float32, torch.float16, torch.bfloat16]: raise TypeError("Only float16, bfloat16, and float32 are allowed.") fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2 fp8_max = torch.finfo(fp8_type).max if inp.numel() == 0: return inp.to(fp8_type), torch.tensor([1.0], device=inp.device) else: if per_channel_scale: per_channel_max = inp.abs().max(dim=-1).values.float() per_channel_max = torch.where(per_channel_max > 0, per_channel_max, 1.0) scale = fp8_max / per_channel_max[:, None] scale_inv = per_channel_max / fp8_max else: per_tensor_max = inp.abs().max().float() per_tensor_max = torch.where(per_tensor_max > 0, per_tensor_max, 1.0) scale = fp8_max / per_tensor_max scale_inv = 1.0 / scale if out is not None: ret = torch.mul(scale, inp.float(), out=out) else: ret = (scale * inp.float()).to(fp8_type) return ret, torch.unsqueeze(scale_inv, dim=0) def cast_from_fp8( inp: torch.Tensor, scale_inv: torch.Tensor, ret_type: torch.dtype, per_channel_scale=False, out=None ) -> torch.Tensor: r""" Args: inp: should be a fp8 torch tensor in one of the types: [torch.float8_e4m3fn, torch.float8_e5m2]. scale: scaling factor returned by cast_to_fp8 function. ret_type: the datatype of the returned tensor. Returns: torch.Tensor """ if inp.dtype not in [torch.float8_e4m3fn, torch.float8_e5m2]: raise TypeError("Only float8_e4m3fn and float8_e5m2 are allowed.") if per_channel_scale: if out is not None: return torch.mul(scale_inv[:, None], inp.float(), out=out) else: ret = scale_inv[:, None] * inp.float() else: if out is not None: return torch.mul(scale_inv, inp.float(), out=out) else: ret = scale_inv * inp.float() return ret.to(ret_type) def _all_reduce_fp8( tensor: torch.Tensor, fp8_format="e4m3", op=ReduceOp.SUM, group=None, async_op: bool = False ) -> Optional[Handle]: r""" This is an in-place operation for compressed all_reduce using fp8. It works like dist.all_reduce but during communication the data is cast to fp8 format. Args: tensor: torch.Tensor in fp32, fp16, bf16 datatype. fp8_format: e4m3 or e5m2 op: ReduceOp.SUM or ReduceOp.AVG Returns: None """ world_size = dist.get_world_size(group=group) input_type = tensor.dtype input_shape = tensor.shape input_device = tensor.device input_size = tensor.numel() flat_padded_x = tensor.flatten() assert op in [ReduceOp.SUM, ReduceOp.AVG], "op can only be ReduceOp.SUM or ReduceOp.AVG" if flat_padded_x.size(0) % world_size != 0: pad_size = world_size - flat_padded_x.size(0) % world_size flat_padded_x = F.pad(flat_padded_x, (0, pad_size)) fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2 ret, scale = cast_to_fp8(flat_padded_x, fp8_format=fp8_format) inp = ret.view(torch.uint8) input_chunks = list(torch.chunk(inp, world_size, dim=0)) output_chunks = list(torch.chunk(torch.empty_like(inp), world_size, dim=0)) dist.all_to_all(output_chunks, input_chunks, group=group) scale_list = [torch.ones(1, dtype=scale.dtype, device=input_device) for _ in range(world_size)] dist.all_gather(scale_list, scale, group=group) summed_out = torch.zeros_like(output_chunks[0]).to(input_type) for scale, out in zip(scale_list, output_chunks): out = out.view(fp8_type) summed_out += cast_from_fp8(out, scale, input_type) if op == ReduceOp.AVG: summed_out.div_(world_size) summed_out_fp8, scale = cast_to_fp8(summed_out, fp8_format=fp8_format) gather_scale_handle = dist.all_gather(scale_list, scale, group=group, async_op=async_op) tensor_list = [torch.empty_like(summed_out_fp8.view(torch.uint8)) for _ in range(world_size)] gather_tensor_handle = dist.all_gather( tensor_list, summed_out_fp8.view(torch.uint8), group=group, async_op=async_op ) def cat_op(): for i in range(world_size): tensor_list[i] = tensor_list[i].view(fp8_type).to(input_type) * scale_list[i] out = torch.cat(tensor_list, dim=0) tensor.copy_(out[:input_size].view(input_shape).to(input_type)) if async_op: return Handle([gather_scale_handle, gather_tensor_handle], cat_op) else: cat_op() def all_reduce_fp8( tensor: torch.Tensor, fp8_format="e4m3", op=ReduceOp.SUM, group=None, async_op: bool = False ) -> Optional[Handle]: # fall back to default op due to performance issue return dist.all_reduce(tensor, op=op, group=group, async_op=async_op) @torch.compile(mode="max-autotune-no-cudagraphs", dynamic=False) def _all_to_all_single_fp8( output, input, output_split_sizes=None, input_split_sizes=None, fp8_format="e5m2", group=None, async_op=False ) -> Optional[Handle]: r""" This is an in-place operation for compressed all_reduce using fp8. It works like dist.all_to_all_single but during communication the data is cast to fp8 format. Args: tensor: torch.Tensor in fp32, fp16, bf16 datatype. fp8_format: e4m3 or e5m2 Returns: None """ world_size = dist.get_world_size(group=group) input_type = input.dtype input_shape = input.shape input_device = input.device input = input.flatten() fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2 ret, scale = cast_to_fp8(input, fp8_format=fp8_format) inp = ret.view(torch.uint8) if input_split_sizes is not None: input_split_sizes = [input_split_sizes[i] * np.prod(input_shape[1:]) for i in range(world_size)] input_chunks = list(torch.split(inp, input_split_sizes)) else: input_chunks = list(torch.chunk(inp, world_size, dim=0)) if output_split_sizes is not None: output_chunks = [ torch.empty((output_split_sizes[i] * np.prod(input_shape[1:]),), device=input_device, dtype=inp.dtype) for i in range(world_size) ] else: if dist.get_rank() == world_size - 1: output_chunks = [torch.empty_like(input_chunks[-1]) for _ in range(world_size)] else: output_chunks = [torch.empty_like(input_chunks[0]) for _ in range(world_size)] chunk_handle = dist.all_to_all(output_chunks, input_chunks, group=group, async_op=async_op) scale_list = [torch.ones(1, dtype=scale.dtype, device=input_device) for _ in range(world_size)] scale_hanle = dist.all_gather(scale_list, scale, group=group, async_op=async_op) def cast_op(): cast_output_chunk = [ cast_from_fp8(out.view(fp8_type), scale, input_type) for scale, out in zip(scale_list, output_chunks) ] tensor_out = torch.cat(cast_output_chunk, dim=0) outputs_shape = list(input_shape) if output_split_sizes is not None: outputs_shape[0] = sum(output_split_sizes) else: outputs_shape = input_shape output.data = tensor_out.view(outputs_shape).to(input_type) if async_op: return Handle([chunk_handle, scale_hanle], cast_op) else: cast_op() def all_to_all_single_fp8( output, input, output_split_sizes=None, input_split_sizes=None, fp8_format="e5m2", group=None, async_op=False ) -> Optional[Handle]: r""" This is wrapper for _all_to_all_single_fp8. """ if process_group_is_intranode(group): return dist.all_to_all_single( output, input, output_split_sizes=output_split_sizes, input_split_sizes=input_split_sizes, group=group, async_op=async_op, ) else: return _all_to_all_single_fp8( output, input, fp8_format=fp8_format, output_split_sizes=output_split_sizes, input_split_sizes=input_split_sizes, group=group, async_op=async_op, ) def cast_to_fp8_pipeline(inp: Any) -> None: """ Cast the hidden_states tensor of inp object to fp8 format before p2p communication in pipeline. The activations tensor is indexed by 'hidden_states' in the inp dict. After FP8 casting, the resulting tensor is saved as float16 or bfloat16 format but the size becomes halved. Metadata such as fp8_scale is saved into inp dict for communication. """ if inp is None: return # In pipeline parallelism, when inp is torch.Tensor, it only contains one element, thus can be omitted. if type(inp) == torch.Tensor: return assert "hidden_states" in inp, "required by pipeline parallelism." assert ( inp["hidden_states"].size(-1) % 2 == 0 ), "tensor size(-1) must be divisible by 2 to view Float8_e4m3fn as BFloat16 or Float16" inp_tensor = inp["hidden_states"] inp_dtype = inp_tensor.dtype min_val, max_val = inp_tensor.aminmax() amax = torch.maximum(min_val.abs(), max_val.abs()) finfo = torch.finfo(torch.float8_e4m3fn) if amax > finfo.max: fp8_type = torch.float8_e5m2 fp8_view_type = torch.float16 else: fp8_type = torch.float8_e4m3fn fp8_view_type = torch.bfloat16 finfo = torch.finfo(fp8_type) scale = torch.tensor(1.0).to(inp_tensor.device) if amax == 0.0 else finfo.max / amax.float() q_tensor = inp_tensor.data.float() * scale # Todo: Currently we use fp8_view_type to indicate which fp8 format is used. This is a temporary workaround due to 'Only support tensor for fast send'. # inp_tensor needs to be a float datatype to avoid error during gradient placement. inp_tensor.data = q_tensor.to(fp8_type).view(fp8_view_type) inp["fp8_scale"] = scale.float().reciprocal() inp["dtype"] = torch.zeros_like(scale).to(inp_dtype) def cast_from_fp8_pipeline(inp: Any, del_metadata=True) -> None: """ Cast the FP8 encoded hidden_states tensor back to original dtype after p2p communication in pipeline. del_metadata = False is useful when this function is called before p2p communication. """ if inp is None: return if type(inp) == torch.Tensor: return assert "hidden_states" in inp, "required by pipeline parallelism." inp_tensor = inp["hidden_states"] scale = inp["fp8_scale"] fp8_view_type = inp_tensor.dtype if fp8_view_type == torch.float16: fp8_type = torch.float8_e5m2 elif fp8_view_type == torch.bfloat16: fp8_type = torch.float8_e4m3fn else: raise TypeError("Only float16, bfloat16 are implemented.") inp_tensor.data = inp_tensor.data.view(fp8_type).to(inp["dtype"]) * scale if del_metadata: del inp["fp8_scale"] del inp["dtype"] def _reduce_scatter_fp8( output: torch.Tensor, input_list, group, fp8_format="e5m2", async_op: bool = False ) -> Optional[Handle]: r""" This is an in-place operation for compressed reduce_scatter using fp8. It works like dist.reduce_scatter but during communication the data is cast to fp8 format. Args: tensor: torch.Tensor in fp32, fp16, bf16 datatype. fp8_format: e4m3 or e5m2 Returns: None """ input_type = output.dtype fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2 scale_list = [] cast_input_list = [] output_chunks = [] output_scale_list = [] for input in input_list: ret, scale = cast_to_fp8(input, fp8_format=fp8_format) scale_list.append(scale) ret = ret.view(torch.uint8) cast_input_list.append(ret) output_chunks.append(torch.empty_like(ret)) output_scale_list.append(torch.empty_like(scale)) chunk_handle = dist.all_to_all(output_chunks, cast_input_list, group=group, async_op=async_op) scale_handle = dist.all_to_all(output_scale_list, scale_list, group=group, async_op=async_op) def cast_op(): summed_out = torch.zeros_like(output_chunks[0]).to(input_type) for scale, out in zip(output_scale_list, output_chunks): out = out.view(fp8_type) summed_out += cast_from_fp8(out, scale, input_type) output.data = summed_out if async_op: return Handle([chunk_handle, scale_handle], cast_op) else: cast_op() def reduce_scatter_fp8( output: torch.Tensor, input_list, group, fp8_format="e5m2", async_op: bool = False ) -> Optional[Handle]: # fall back to default op due to performance issue return dist.reduce_scatter(output, input_list, group=group, async_op=async_op) def fp8_compress_ddp_grad_comm_hook_async( process_group: dist.ProcessGroup, bucket: dist.GradBucket, fp8_format: str = "e5m2", ) -> torch.futures.Future[torch.Tensor]: """ Compress by casting ``GradBucket`` to FP8 floating-point format divided by process group size. This DDP communication hook implements a simple gradient compression approach that casts ``GradBucket`` tensor to FP8 floating-point format (``torch.float8_e5m2`` or ``torch.bfloat16_e4m3``), and then divides it by the process group size. Once compressed gradient tensors are allreduced, the chained callback ``decompress`` casts it back to the input data type (such as ``float32``). Example:: >>> ddp_model.register_comm_hook(process_group, fp8_compress_ddp_grad_comm_hook_async) """ group_to_use = process_group if process_group is not None else dist.group.WORLD input_tensor = bucket.buffer() world_size = dist.get_world_size() input_type = input_tensor.dtype input_device = input_tensor.device flat_padded_x = input_tensor.flatten() if flat_padded_x.size(0) % world_size != 0: pad_size = world_size - flat_padded_x.size(0) % world_size flat_padded_x = F.pad(flat_padded_x, (0, pad_size)) fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2 ret, scale = cast_to_fp8(flat_padded_x, fp8_format=fp8_format) inp = ret.view(torch.uint8) output_chunks_single = torch.empty_like(inp) split_sizes = [inp.numel() // world_size for _ in range(world_size)] fut0 = dist.all_to_all_single( output_chunks_single, inp, output_split_sizes=split_sizes, input_split_sizes=split_sizes, group=group_to_use, async_op=True, ).get_future() scale_list = [torch.ones(1, dtype=scale.dtype, device=input_device) for _ in range(world_size)] fut1 = dist.all_gather_into_tensor( torch.cat(scale_list, dim=0), scale, group=group_to_use, async_op=True ).get_future() all_to_all_fut = torch.futures.collect_all([fut0, fut1]) def sum_and_allgather(fut): output_chunks_single = fut.value()[0].wait()[0] scale_list_single = fut.value()[1].wait()[0] output_chunks = list(torch.chunk(output_chunks_single, world_size, dim=0)) scale_list = scale_list_single.chunk(world_size, dim=0) summed_out = torch.zeros_like(output_chunks[0]).to(input_type) for scale, out in zip(scale_list, output_chunks): out = out.view(fp8_type) summed_out += cast_from_fp8(out, scale, input_type) summed_out.div_(world_size) summed_out_fp8, scale = cast_to_fp8(summed_out, fp8_format=fp8_format) tensor_list_single = torch.empty(summed_out_fp8.size(0) * world_size, device=input_device, dtype=torch.uint8) fut2 = dist.all_gather_into_tensor( tensor_list_single, summed_out_fp8.view(torch.uint8), group=group_to_use, async_op=True ).get_future() scale_list = [torch.ones(1, dtype=scale.dtype, device=input_device) for _ in range(world_size)] fut3 = dist.all_gather_into_tensor( torch.cat(scale_list, dim=0), scale, group=group_to_use, async_op=True ).get_future() fut_combined2 = torch.futures.collect_all([fut2, fut3]) return fut_combined2 def decompress(fut): tensor_list_single = fut.value().wait()[0].value()[0] scale_list_single = fut.value().wait()[1].value()[0] tensor_list = list(torch.chunk(tensor_list_single, world_size, dim=0)) scale_list = scale_list_single.chunk(world_size, dim=0) for i in range(world_size): tensor_list[i] = tensor_list[i].view(fp8_type).to(input_type) * scale_list[i] out = torch.cat(tensor_list, dim=0) input_tensor_size = input_tensor.numel() input_shape = input_tensor.shape out = out[:input_tensor_size] input_tensor.copy_(out.view(input_shape).to(input_type)) return input_tensor return all_to_all_fut.then(sum_and_allgather).then(decompress) def fp8_compress_ddp_grad_comm_hook_sync( process_group: dist.ProcessGroup, bucket: dist.GradBucket, fp8_format="e5m2", ) -> torch.futures.Future[torch.Tensor]: """ Return a future that wraps the input, after the input is allreduced. However, the allreduce commnunication is synchronized. This breaks the overlapping between allreduce communication and backward compuation. This hook should **only** be used for debugging purposes, instead of the normal gradient synchronization. For asynchronized implementation, use fp8_compress_ddp_grad_comm_hook_async instead. Example:: >>> # xdoctest: +SKIP >>> ddp_model.register_comm_hook(None, fp8_compress_ddp_grad_comm_hook_sync) """ buffer = bucket.buffer() all_reduce_fp8(buffer, fp8_format=fp8_format) fut: torch.futures.Future[torch.Tensor] = torch.futures.Future() fut.set_result(bucket.buffer()) return fut def fp8_compress_fsdp_grad_comm_hook( state: object, unsharded_gradient_flattened: torch.Tensor, sharded_gradient: torch.Tensor, group=None, fp8_format="e5m2", ) -> None: """ This communication hook implements a simple gradient compression approach that casts unsharded_gradient_flattened tensor to FP8 floating-point format (``torch.float8_e5m2`` or ``torch.bfloat16_e4m3``), and then perform scatter_allreduce logic by using all_to_all and all_gather among the process group. Example:: >>> fsdp_model.register_comm_hook(None, fp8_compress_fsdp_grad_comm_hook) """ grad = unsharded_gradient_flattened fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2 input_type = grad.dtype input_device = grad.device world_size = dist.get_world_size(group=group) grad_fp8, scale = cast_to_fp8(grad, fp8_format=fp8_format) uint8_buffer = torch.empty_like(grad_fp8).view(torch.uint8) dist.all_to_all_single(uint8_buffer, grad_fp8.view(torch.uint8), group=group) scale_list = [torch.ones(1, dtype=scale.dtype, device=input_device) for _ in range(world_size)] dist.all_gather(scale_list, scale, group=group) buffer_list = list(torch.chunk(uint8_buffer.view(fp8_type), world_size, dim=0)) sharded_gradient.zero_() for tensor, scale in zip(buffer_list, scale_list): sharded_gradient += cast_from_fp8(tensor, scale, input_type) def fp8_compress_fsdp_params_comm_hook( state: object, padded_unsharded_flat_param: torch.Tensor, sharded_flat_param: torch.Tensor, group=None, fp8_format="e5m2", ) -> None: """ This hook is pending the official support for parameters communication hook in FSDP, e.g. register_params_comm_hook. Example:: >>> fsdp_model.register_params_comm_hook(None, fp8_compress_fsdp_params_comm_hook) """ fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2 fp8_max = torch.finfo(fp8_type).max inp = sharded_flat_param out = padded_unsharded_flat_param per_tensor_max = inp.abs().max().float() per_tensor_max = torch.where(per_tensor_max > 0, per_tensor_max, 1.0) dist.all_reduce(per_tensor_max, op=torch.distributed.ReduceOp.MAX, group=group) scale = fp8_max / per_tensor_max fp8_sharded_flat_param = (scale * inp.float()).to(fp8_type).view(torch.uint8) fp8_out = torch.empty(out.shape, dtype=torch.uint8, device=out.device) dist.all_gather_into_tensor( fp8_out, fp8_sharded_flat_param, group=group, ) padded_unsharded_flat_param.copy_((fp8_out.view(fp8_type).float() / scale).to(out.dtype)) def split_chunk_by_channel( chunk: torch.Tensor, channel_size: int, num_channels: int, rank: int = 0, world_size: int = 1 ): offset = chunk.numel() * rank end = offset + chunk.numel() break_points = [x for x in range(0, channel_size * num_channels + 1, channel_size) if offset <= x <= end] if len(break_points) == 0 or break_points[0] > offset: break_points.insert(0, offset) if break_points[-1] < end: break_points.append(end) sizes = [b - a for a, b in zip(break_points[:-1], break_points[1:])] return chunk.split(sizes) def all_gather_into_tensor_flat_fp8( output_tensor: torch.Tensor, input_tensor: torch.Tensor, output_shape: torch.Size, group: dist.ProcessGroup, fp8_format: str = "e4m3", async_op: bool = False, ) -> Optional[Handle]: """all gather into tensor in fp8 format Args: output_tensor (torch.Tensor): output tensor, which is flattened input_tensor (torch.Tensor): input tensor, which is flattened group (dist.ProcessGroup): process group fp8_format (str, optional): fp8 format, e4m3 or e5m2. Defaults to "e4m3". """ assert input_tensor.dim() == 1 and output_tensor.dim() == 1, "input/output tensor should be flattened" world_size = dist.get_world_size(group) assert ( output_tensor.numel() == input_tensor.numel() * world_size ), "output tensor size should be world_size times of input tensor size" input_type = output_tensor.dtype fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2 fp8_max = torch.finfo(fp8_type).max if len(output_shape) == 2: per_channel_max = torch.zeros(output_shape[0], device=output_tensor.device, dtype=torch.float) num_channels, channel_size = output_shape rank = dist.get_rank(group) channel_start_idx = (input_tensor.numel() * rank) // channel_size per_channel_splits = split_chunk_by_channel(input_tensor, channel_size, num_channels, rank, world_size) for i, per_channel_split in enumerate(per_channel_splits): idx = i + channel_start_idx if idx < num_channels: per_channel_max[idx] = per_channel_split.abs().max().float() dist.all_reduce(per_channel_max, op=dist.ReduceOp.MAX, group=group) per_channel_max = torch.where(per_channel_max > 0, per_channel_max, 1.0) scale = fp8_max / per_channel_max fp8_input = input_tensor.float() fp8_per_channel_splits = split_chunk_by_channel(fp8_input, channel_size, num_channels, rank, world_size) for i, per_channel_split in enumerate(fp8_per_channel_splits): idx = i + channel_start_idx if idx < num_channels: per_channel_split.mul_(scale[idx]) fp8_input = fp8_input.to(fp8_type) else: per_tensor_max = input_tensor.abs().max().float() dist.all_reduce(per_tensor_max, op=dist.ReduceOp.MAX, group=group) per_tensor_max = torch.where(per_tensor_max > 0, per_tensor_max, 1.0) scale = fp8_max / per_tensor_max fp8_input = (scale * input_tensor.float()).to(fp8_type) scale_inv = 1.0 / scale buffer = torch.empty_like(output_tensor, dtype=fp8_type) tensor_handle = dist.all_gather_into_tensor( buffer.view(torch.uint8), fp8_input.view(torch.uint8), group=group, async_op=async_op ) def cast_op(): numel = output_shape.numel() valid_buffer = buffer[:numel].reshape(output_shape) valid_buffer = cast_from_fp8(valid_buffer, scale_inv, input_type, per_channel_scale=(len(output_shape) == 2)) output_tensor[:numel].copy_(valid_buffer.view(-1)) if async_op: return Handle([tensor_handle], cast_op) else: cast_op() @torch.compile(mode="max-autotune-no-cudagraphs", dynamic=False) def _all_to_all_fp8(output_list, input_list, group=None, fp8_format="e5m2", async_op=False): world_size = dist.get_world_size(group) input_type = input_list[0].dtype fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2 scale_list = [] tensor_list = [] for i in range(world_size): input_tensor = input_list[i] ret, scale = cast_to_fp8(input_tensor, fp8_format=fp8_format) scale_list.append(scale) ret = ret.view(torch.uint8) tensor_list.append(ret) output_scale_list = [torch.empty_like(x) for x in scale_list] output_tensor_list = [torch.empty_like(x) for x in tensor_list] tensor_hanle = dist.all_to_all(output_tensor_list, tensor_list, group=group, async_op=async_op) scale_handle = dist.all_to_all(output_scale_list, scale_list, group=group, async_op=async_op) def cast_op(): for i in range(world_size): scale = output_scale_list[i] tensor = output_tensor_list[i] tensor = tensor.view(fp8_type) output_list[i].copy_(cast_from_fp8(tensor, scale, input_type)) if async_op: return Handle([tensor_hanle, scale_handle], cast_op) else: cast_op() def all_to_all_fp8(output_list, input_list, group=None, fp8_format="e5m2", async_op=False): if process_group_is_intranode(group): return dist.all_to_all(output_list, input_list, group=group, async_op=async_op) else: return _all_to_all_fp8(output_list, input_list, group=group, fp8_format=fp8_format, async_op=async_op) def gather_fp8(output_list, input_, group=None, fp8_format="e5m2", async_op: bool = False) -> Optional[Handle]: world_size = dist.get_world_size(group) input_type = input_.dtype ret, scale = cast_to_fp8(input_, fp8_format=fp8_format) fp8_type = ret.dtype input_ = ret.view(torch.uint8) tensor_list = [torch.empty_like(input_) for _ in range(world_size)] scale_list = [torch.ones(1, dtype=scale.dtype, device=input_.device) for _ in range(world_size)] chunk_handle = dist.all_gather(tensor_list, input_, group=group, async_op=async_op) scale_hanle = dist.all_gather(scale_list, scale, group=group, async_op=async_op) def cast_op(): for i in range(world_size): output = tensor_list[i].view(fp8_type) scale = scale_list[i] output_list[i].copy_(cast_from_fp8(output, scale, input_type)) if async_op: return Handle([chunk_handle, scale_hanle], cast_op) else: cast_op() @torch.compile(mode="max-autotune-no-cudagraphs", dynamic=False) def all_gather_fp8(output_list, input_, group=None, fp8_format="e5m2", async_op: bool = False) -> Optional[Handle]: world_size = dist.get_world_size(group) shape = input_.shape input_type = input_.dtype fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2 combined_buffer = torch.empty(world_size * (SCALE_BYTES + input_.numel()), dtype=torch.uint8, device=input_.device) combined_buffers = list(combined_buffer.chunk(world_size, dim=0)) cur_buffer = combined_buffers[dist.get_rank(group)] ret = cur_buffer[SCALE_BYTES:].view(fp8_type) ret, scale = cast_to_fp8(input_.view(-1), fp8_format=fp8_format, out=ret) cur_buffer[:SCALE_BYTES].view(torch.float)[0] = scale # cur_buffer[:SCALE_BYTES] = scale.unsqueeze(0).view(torch.uint8) dist.all_gather(combined_buffers, cur_buffer, group=group, async_op=async_op) for out, buf in zip(output_list, combined_buffers): scale = buf[:SCALE_BYTES].clone().view(scale.dtype) output = buf[SCALE_BYTES:].view(fp8_type) cast_from_fp8(output.view(shape), scale, input_type, out=out) # output = combined_buffer.view(world_size, -1)[:, SCALE_BYTES:].view(fp8_type) # scales = combined_buffer.view(world_size, -1)[:, :SCALE_BYTES].view(torch.float) # output = output.float() * scales # for i, out in enumerate(output_list): # out.copy_(output[i].view(shape)) @torch.compile(mode="max-autotune-no-cudagraphs", dynamic=False) def all_gather_fp8_ring(output_list, input_, group=None, fp8_format="e5m2", async_op: bool = False) -> Optional[Handle]: world_size = dist.get_world_size(group) rank = dist.get_rank(group) send_rank = (rank + 1) % world_size recv_rank = (rank - 1) % world_size shape = input_.shape input_type = input_.dtype fp8_type = torch.float8_e4m3fn if fp8_format == "e4m3" else torch.float8_e5m2 combined_buffer = torch.empty(world_size * (SCALE_BYTES + input_.numel()), dtype=torch.uint8, device=input_.device) combined_buffers = list(combined_buffer.chunk(world_size, dim=0)) cur_buffer = combined_buffers[dist.get_rank(group)] ret = cur_buffer[SCALE_BYTES:].view(fp8_type) ret, scale = cast_to_fp8(input_.view(-1), fp8_format=fp8_format, out=ret) # cur_buffer[:SCALE_BYTES] = scale.unsqueeze(0).view(torch.uint8) cur_buffer[:SCALE_BYTES].view(torch.float)[0] = scale def send_recv(idx): send_idx = (rank - idx) % world_size recv_idx = (rank - idx - 1) % world_size ops = dist.batch_isend_irecv( [ dist.P2POp(dist.isend, combined_buffers[send_idx], send_rank, group=group), dist.P2POp(dist.irecv, combined_buffers[recv_idx], recv_rank, group=group), ] ) return ops def cast(idx): cast_idx = (rank - idx - 1) % world_size scale = combined_buffers[cast_idx][:SCALE_BYTES].clone().view(torch.float) output = combined_buffers[cast_idx][SCALE_BYTES:].view(fp8_type) cast_from_fp8(output.view(shape), scale, input_type, out=output_list[cast_idx]) # warmup ops = send_recv(0) output_list[rank].copy_(input_) for op in ops: op.wait() ops = [] # 1p-1c for i in range(1, world_size - 1): new_ops = send_recv(i) for op in ops: op.wait() cast(i - 1) ops = new_ops # cooldown for op in ops: op.wait() cast(world_size - 2) class _LinearFp8(torch.autograd.Function): @staticmethod def forward( ctx: Any, x: torch.Tensor, w: torch.Tensor, bias: Optional[torch.Tensor], ) -> Any: assert ( x.dtype in (torch.bfloat16, torch.float16) and x.dtype == w.dtype ), "Only float16 and bfloat16 are allowed." if bias is not None: assert bias.dtype == x.dtype, "Bias should have the same dtype as input." # ensure x and w are row-major x = x.contiguous() w = w.contiguous() ctx.x_shape = x.shape ctx.has_bias = bias is not None ctx.out_dtype = x.dtype x = x.reshape(-1, x.shape[-1]) x_fp8, inv_scale_x = cast_to_fp8(x, fp8_format="e4m3") w_fp8, inv_scale_w = cast_to_fp8(w, fp8_format="e4m3") ctx.x_fp8 = x_fp8 ctx.w_fp8_t = w_fp8.t() ctx.inv_scale_x = inv_scale_x ctx.inv_scale_w = inv_scale_w out = torch._scaled_mm( x_fp8, ctx.w_fp8_t, bias=bias, out_dtype=ctx.out_dtype, scale_a=inv_scale_x, scale_b=inv_scale_w, use_fast_accum=True, )[0] return out.reshape(*ctx.x_shape[:-1], w.shape[0]) @staticmethod def backward(ctx: Any, out_grad) -> Any: out_grad = out_grad.reshape(-1, out_grad.shape[-1]) out_grad_fp8, out_grad_scale = cast_to_fp8(out_grad, fp8_format="e5m2") x_grad = torch._scaled_mm( out_grad_fp8, ctx.w_fp8_t.contiguous().t(), out_dtype=ctx.out_dtype, scale_a=out_grad_scale, scale_b=ctx.inv_scale_w, use_fast_accum=True, )[0] w_grad = torch._scaled_mm( out_grad_fp8.t().contiguous(), ctx.x_fp8.t().contiguous().t(), out_dtype=ctx.out_dtype, scale_a=out_grad_scale, scale_b=ctx.inv_scale_x, use_fast_accum=True, )[0] bias_grad = None if ctx.has_bias: bias_grad = out_grad.sum(0) return x_grad.reshape(ctx.x_shape), w_grad, bias_grad @torch.compile(mode="max-autotune-no-cudagraphs", disable=not SUPPORT_TORCH_COMPILE, dynamic=False) def _linear_fp8(input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor: return _LinearFp8.apply(input, weight, bias) def linear_fp8(input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor: out = _linear_fp8(input, weight, bias) return out