import torch from packaging.version import Version if Version(torch.__version__) >= Version("2.0.0"): from torch.optim.lr_scheduler import LRScheduler as _LRScheduler else: from torch.optim.lr_scheduler import _LRScheduler from colossalai.logging import get_dist_logger class _enable_get_lr_call: def __init__(self, o): self.o = o def __enter__(self): self.o._get_lr_called_within_step = True return self def __exit__(self, type, value, traceback): self.o._get_lr_called_within_step = False class TwoStageScheduler(_LRScheduler): def __init__(self, optimizer, after_scheduler: _LRScheduler, last_epoch=-1): self.after_scheduler = after_scheduler self.finished = False super().__init__(optimizer, last_epoch) def state_dict(self): state_dict = {key: value for key, value in self.__dict__.items() if key not in "optimizer"} if isinstance(state_dict["after_scheduler"], _LRScheduler): state_dict["after_scheduler_type"] = type(state_dict["after_scheduler"]).__name__ state_dict["after_scheduler_dict"] = state_dict["after_scheduler"].state_dict() del state_dict["after_scheduler"] else: raise NotImplementedError() return state_dict def load_state_dict(self, state_dict): if "after_scheduler_dict" not in state_dict: logger = get_dist_logger() logger.warning( "after_scheduler_dict is not found, skip loading after_scheduler. This may cause unexpected behavior." ) else: self.after_scheduler.load_state_dict(state_dict["after_scheduler_dict"]) state_dict = { key: value for key, value in state_dict.items() if key not in ("after_scheduler_type", "after_scheduler_dict") } super().load_state_dict(state_dict) class DelayerScheduler(TwoStageScheduler): """Starts with a flat lr schedule until it reaches N epochs then applies the specific scheduler (For example: ReduceLROnPlateau) Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. delay_epochs (int): Number of epochs to keep the initial lr until starting applying the scheduler. after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, delay_epochs, after_scheduler, last_epoch=-1): if delay_epochs < 0: raise ValueError(f"delay_epochs must >= 0, got {delay_epochs}") self.delay_epochs = delay_epochs super().__init__(optimizer, after_scheduler, last_epoch) def get_lr(self): if self.last_epoch >= self.delay_epochs: if not self.finished: self.after_scheduler.base_lrs = self.base_lrs self.finished = True with _enable_get_lr_call(self.after_scheduler): return self.after_scheduler.get_lr() return self.base_lrs def step(self, epoch=None): if self.finished: if epoch is None: self.after_scheduler.step(None) self._last_lr = self.after_scheduler.get_last_lr() else: self.after_scheduler.step(epoch - self.delay_epochs) self._last_lr = self.after_scheduler.get_last_lr() else: return super(DelayerScheduler, self).step(epoch) class WarmupScheduler(TwoStageScheduler): """Starts with a linear warmup lr schedule until it reaches N epochs then applies the specific scheduler (For example: ReduceLROnPlateau). Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. warmup_epochs (int): Number of epochs to linearly warmup lr until starting applying the scheduler. after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, warmup_epochs, after_scheduler, last_epoch=-1): self.warmup_epochs = int(warmup_epochs) super().__init__(optimizer, after_scheduler, last_epoch) def get_lr(self): if self.last_epoch >= self.warmup_epochs: if not self.finished: self.after_scheduler.base_lrs = self.base_lrs self.finished = True return self.after_scheduler.get_lr() return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs] def step(self, epoch=None): if self.finished: if epoch is None: self.after_scheduler.step(None) self._last_lr = self.after_scheduler.get_last_lr() else: self.after_scheduler.step(epoch - self.warmup_epochs) self._last_lr = self.after_scheduler.get_last_lr() else: return super().step(epoch) class WarmupDelayerScheduler(TwoStageScheduler): """Starts with a linear warmup lr schedule until it reaches N epochs and a flat lr schedule until it reaches M epochs then applies the specific scheduler (For example: ReduceLROnPlateau). Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. warmup_epochs (int): Number of epochs to linearly warmup lr until starting applying the scheduler. delay_epochs (int): Number of epochs to keep the initial lr until starting applying the scheduler. after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, warmup_epochs, delay_epochs, after_scheduler, last_epoch=-1): if delay_epochs < 0: raise ValueError(f"delay_epochs must >= 0, got {delay_epochs}") if warmup_epochs < 0: raise ValueError(f"warmup_epochs must >= 0, got {warmup_epochs}") self.warmup_epochs = warmup_epochs self.delay_epochs = delay_epochs super().__init__(optimizer, after_scheduler, last_epoch) def get_lr(self): if self.last_epoch >= self.warmup_epochs + self.delay_epochs: if not self.finished: self.after_scheduler.base_lrs = self.base_lrs # reset lr to base_lr for group, base_lr in zip(self.optimizer.param_groups, self.base_lrs): group["lr"] = base_lr self.finished = True with _enable_get_lr_call(self.after_scheduler): return self.after_scheduler.get_lr() elif self.last_epoch >= self.warmup_epochs: return self.base_lrs return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs] def step(self, epoch=None): if self.finished: if epoch is None: self.after_scheduler.step(None) self._last_lr = self.after_scheduler.get_last_lr() else: self.after_scheduler.step(epoch - self.warmup_epochs) self._last_lr = self.after_scheduler.get_last_lr() else: return super().step(epoch)