import torch.nn as nn class ModelWrapper(nn.Module): """ A wrapper class to define the common interface used by booster. Args: module (nn.Module): The model to be wrapped. """ def __init__(self, module: nn.Module) -> None: super().__init__() self.module = module def unwrap(self): """ Unwrap the model to return the original model for checkpoint saving/loading. """ if isinstance(self.module, ModelWrapper): return self.module.unwrap() return self.module def forward(self, *args, **kwargs): return self.module(*args, **kwargs) class AMPModelMixin: """This mixin class defines the interface for AMP training.""" def update_master_params(self): """ Update the master parameters for AMP training. """