import torch.nn as nn from transformers import GPT2Config, GPT2LMHeadModel class GPTLMModel(nn.Module): def __init__( self, hidden_size=768, num_layers=12, num_attention_heads=12, max_seq_len=1024, vocab_size=50257, checkpoint=False, ): super().__init__() self.checkpoint = checkpoint self.model = GPT2LMHeadModel( GPT2Config( n_embd=hidden_size, n_layer=num_layers, n_head=num_attention_heads, n_positions=max_seq_len, n_ctx=max_seq_len, vocab_size=vocab_size, ) ) if checkpoint: self.model.gradient_checkpointing_enable() def forward(self, input_ids, attention_mask): # Only return lm_logits return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=not self.checkpoint)[0] class GPTLMLoss(nn.Module): def __init__(self): super().__init__() self.loss_fn = nn.CrossEntropyLoss() def forward(self, logits, labels): shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) def gpt2_medium(checkpoint=False): return GPTLMModel(hidden_size=1024, num_layers=24, num_attention_heads=16, checkpoint=checkpoint) def gpt2_xl(checkpoint=False): return GPTLMModel(hidden_size=1600, num_layers=48, num_attention_heads=32, checkpoint=checkpoint)