# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Learning rate decay functions.""" import math class AnnealingLR(object): """Anneals the learning rate.""" def __init__( self, optimizer, max_lr, min_lr, warmup_steps, decay_steps, decay_style, use_checkpoint_lr_scheduler=True, override_lr_scheduler=False, ): # Class values. self.optimizer = optimizer self.max_lr = float(max_lr) self.min_lr = min_lr assert self.min_lr >= 0.0 assert self.max_lr >= self.min_lr self.warmup_steps = warmup_steps self.num_steps = 0 self.decay_steps = decay_steps assert self.decay_steps > 0 assert self.warmup_steps < self.decay_steps self.decay_style = decay_style self.override_lr_scheduler = override_lr_scheduler self.use_checkpoint_lr_scheduler = use_checkpoint_lr_scheduler if self.override_lr_scheduler: assert not self.use_checkpoint_lr_scheduler, "both override and " "use-checkpoint are set." # Set the learning rate self.step(0) def get_lr(self): """Learning rate decay functions from: https://openreview.net/pdf?id=BJYwwY9ll pg. 4""" # Use linear warmup for the initial part. if self.warmup_steps > 0 and self.num_steps <= self.warmup_steps: return self.max_lr * float(self.num_steps) / float(self.warmup_steps) # If the learning rate is constant, just return the initial value. if self.decay_style == "constant": return self.max_lr # For any steps larger than `self.decay_steps`, use `self.min_lr`. if self.num_steps > self.decay_steps: return self.min_lr # If we are done with the warmup period, use the decay style. num_steps_ = self.num_steps - self.warmup_steps decay_steps_ = self.decay_steps - self.warmup_steps decay_ratio = float(num_steps_) / float(decay_steps_) assert decay_ratio >= 0.0 assert decay_ratio <= 1.0 delta_lr = self.max_lr - self.min_lr if self.decay_style == "linear": coeff = 1.0 - decay_ratio elif self.decay_style == "cosine": coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0) else: raise Exception("{} decay style is not supported.".format(self.decay_style)) return self.min_lr + coeff * delta_lr def step(self, increment=1): """Set lr for all parameters groups.""" self.num_steps += increment new_lr = self.get_lr() for group in self.optimizer.param_groups: group["lr"] = new_lr def state_dict(self): state_dict = { "max_lr": self.max_lr, "warmup_steps": self.warmup_steps, "num_steps": self.num_steps, "decay_style": self.decay_style, "decay_steps": self.decay_steps, "min_lr": self.min_lr, } return state_dict def _check_and_set(self, cls_value, sd_value, name): """Auxiliary function for checking the values in the checkpoint and setting them.""" if self.override_lr_scheduler: return cls_value if not self.use_checkpoint_lr_scheduler: assert cls_value == sd_value, ( f"AnnealingLR: class input value {cls_value} and checkpoint" f"value {sd_value} for {name} do not match" ) return sd_value def load_state_dict(self, sd): if "start_lr" in sd: max_lr_ = sd["start_lr"] else: max_lr_ = sd["max_lr"] self.max_lr = self._check_and_set(self.max_lr, max_lr_, "learning rate") self.min_lr = self._check_and_set(self.min_lr, sd["min_lr"], "minimum learning rate") if "warmup_iter" in sd: warmup_steps_ = sd["warmup_iter"] else: warmup_steps_ = sd["warmup_steps"] self.warmup_steps = self._check_and_set(self.warmup_steps, warmup_steps_, "warmup iterations") if "end_iter" in sd: decay_steps_ = sd["end_iter"] else: decay_steps_ = sd["decay_steps"] self.decay_steps = self._check_and_set(self.decay_steps, decay_steps_, "total number of iterations") self.decay_style = self._check_and_set(self.decay_style, sd["decay_style"], "decay style") if "num_iters" in sd: num_steps = sd["num_iters"] else: num_steps = sd["num_steps"] self.step(increment=num_steps)