## Overview This directory includes two parts: Using the Booster API finetune Huggingface Bert and AlBert models and benchmarking Bert and AlBert models with different Booster Plugin. ## Finetune ``` bash test_ci.sh ``` ### Bert-Finetune Results | Plugin | Accuracy | F1-score | GPU number | | -------------- | -------- | -------- | -------- | | torch_ddp | 84.4% | 88.6% | 2 | | torch_ddp_fp16 | 84.7% | 88.8% | 2 | | gemini | 84.0% | 88.4% | 2 | | hybrid_parallel | 84.5% | 88.6% | 4 | ## Benchmark ``` bash benchmark.sh ``` Now include these metrics in benchmark: CUDA mem occupy, throughput and the number of model parameters. If you have custom metrics, you can add them to benchmark_util. ### Results #### Bert | | max cuda mem | throughput(sample/s) | params | | :-----| -----------: | :--------: | :----: | | ddp | 21.44 GB | 3.0 | 82M | | ddp_fp16 | 16.26 GB | 11.3 | 82M | | gemini | 11.0 GB | 12.9 | 82M | | low_level_zero | 11.29 G | 14.7 | 82M | #### AlBert | | max cuda mem | throughput(sample/s) | params | | :-----| -----------: | :--------: | :----: | | ddp | OOM | | | | ddp_fp16 | OOM | | | | gemini | 69.39 G | 1.3 | 208M | | low_level_zero | 56.89 G | 1.4 | 208M |