#!/usr/bin/env python # -*- encoding: utf-8 -*- import os from pathlib import Path import torch import torch.distributed as dist from torchvision import datasets, transforms import colossalai from colossalai.context import Config from colossalai.legacy.context import ParallelMode from colossalai.legacy.core import global_context as gpc from colossalai.legacy.utils import get_dataloader from colossalai.testing import rerun_if_address_is_in_use, spawn CONFIG = Config( dict( parallel=dict( pipeline=dict(size=1), tensor=dict(size=1, mode=None), ), seed=1024, ) ) def run_data_sampler(rank, world_size, port): dist_args = dict(config=CONFIG, rank=rank, world_size=world_size, backend="gloo", port=port, host="localhost") colossalai.legacy.launch(**dist_args) print("finished initialization") # build dataset transform_pipeline = [transforms.ToTensor()] transform_pipeline = transforms.Compose(transform_pipeline) dataset = datasets.CIFAR10(root=Path(os.environ["DATA"]), train=True, download=True, transform=transform_pipeline) # build dataloader dataloader = get_dataloader(dataset, batch_size=8, add_sampler=True) data_iter = iter(dataloader) img, label = data_iter.next() img = img[0] if gpc.get_local_rank(ParallelMode.DATA) != 0: img_to_compare = img.clone() else: img_to_compare = img dist.broadcast(img_to_compare, src=0, group=gpc.get_group(ParallelMode.DATA)) if gpc.get_local_rank(ParallelMode.DATA) != 0: assert not torch.equal( img, img_to_compare ), "Same image was distributed across ranks but expected it to be different" torch.cuda.empty_cache() @rerun_if_address_is_in_use() def test_data_sampler(): spawn(run_data_sampler, 4) if __name__ == "__main__": test_data_sampler()