import torch from torch.distributed import reduce_scatter from torch.distributed.distributed_c10d import _get_default_group from torch.testing import assert_close from colossalai import launch from colossalai.accelerator import get_accelerator from colossalai.quantization.fp8 import reduce_scatter_fp8 from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn @parameterize("shape", [(16, 8, 4)]) @parameterize("scatter_dim", [0, 1, 2]) @parameterize("dtype", [torch.bfloat16, torch.float16]) @parameterize("fp8_format", ["e4m3", "e5m2"]) @parameterize("async_op", [True, False]) def check_4gpu(shape, scatter_dim, dtype, fp8_format, async_op): x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device()) input_list = list(torch.chunk(x, dim=scatter_dim, chunks=4)) input_list = [t.contiguous() for t in input_list] output_origin = torch.empty_like(input_list[0]) output_fp8 = torch.empty_like(input_list[0]) origin_handle = reduce_scatter(output_origin, input_list, group=_get_default_group(), async_op=async_op) fp8_handle = reduce_scatter_fp8( output_fp8, input_list, group=_get_default_group(), fp8_format=fp8_format, async_op=async_op ) if async_op: origin_handle.wait() fp8_handle.wait() assert_close(output_origin, output_fp8, rtol=0.1, atol=0.1) def run_dist(rank, world_size, port): launch(rank=rank, world_size=world_size, port=port, host="localhost") check_4gpu() @rerun_if_address_is_in_use() def test_reduce_scatter(): spawn(run_dist, 4) if __name__ == "__main__": test_reduce_scatter()