import os import re from datetime import datetime from setuptools import find_packages, setup from op_builder.utils import get_cuda_bare_metal_version try: import torch from torch.utils.cpp_extension import CUDA_HOME, BuildExtension, CUDAExtension print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) TORCH_MAJOR = int(torch.__version__.split('.')[0]) TORCH_MINOR = int(torch.__version__.split('.')[1]) if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 10): raise RuntimeError("Colossal-AI requires Pytorch 1.10 or newer.\n" "The latest stable release can be obtained from https://pytorch.org/") TORCH_AVAILABLE = True except ImportError: TORCH_AVAILABLE = False CUDA_HOME = None # ninja build does not work unless include_dirs are abs path this_dir = os.path.dirname(os.path.abspath(__file__)) build_cuda_ext = False ext_modules = [] is_nightly = int(os.environ.get('NIGHTLY', '0')) == 1 if int(os.environ.get('CUDA_EXT', '0')) == 1: if not TORCH_AVAILABLE: raise ModuleNotFoundError( "PyTorch is not found while CUDA_EXT=1. You need to install PyTorch first in order to build CUDA extensions" ) if not CUDA_HOME: raise RuntimeError( "CUDA_HOME is not found while CUDA_EXT=1. You need to export CUDA_HOME environment vairable or install CUDA Toolkit first in order to build CUDA extensions" ) build_cuda_ext = True def check_cuda_torch_binary_vs_bare_metal(cuda_dir): raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir) torch_binary_major = torch.version.cuda.split(".")[0] torch_binary_minor = torch.version.cuda.split(".")[1] print("\nCompiling cuda extensions with") print(raw_output + "from " + cuda_dir + "/bin\n") if bare_metal_major != torch_binary_major: print(f'The detected CUDA version ({raw_output}) mismatches the version that was used to compile PyTorch ' f'({torch.version.cuda}). CUDA extension will not be installed.') return False if bare_metal_minor != torch_binary_minor: print("\nWarning: Cuda extensions are being compiled with a version of Cuda that does " "not match the version used to compile Pytorch binaries. " f"Pytorch binaries were compiled with Cuda {torch.version.cuda}.\n" "In some cases, a minor-version mismatch will not cause later errors: " "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. ") return True def check_cuda_availability(cuda_dir): if not torch.cuda.is_available(): # https://github.com/NVIDIA/apex/issues/486 # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query # torch.cuda.get_device_capability(), which will fail if you are compiling in an environment # without visible GPUs (e.g. during an nvidia-docker build command). print( '\nWarning: Torch did not find available GPUs on this system.\n', 'If your intention is to cross-compile, this is not an error.\n' 'By default, Colossal-AI will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n' 'Volta (compute capability 7.0), Turing (compute capability 7.5),\n' 'and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n' 'If you wish to cross-compile for a single specific architecture,\n' 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n') if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None: _, bare_metal_major, _ = get_cuda_bare_metal_version(cuda_dir) if int(bare_metal_major) == 11: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0" else: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5" return False if cuda_dir is None: print("nvcc was not found. CUDA extension will not be installed. If you're installing within a container from " "https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") return False return True def append_nvcc_threads(nvcc_extra_args): _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2: return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args def fetch_requirements(path): with open(path, 'r') as fd: return [r.strip() for r in fd.readlines()] def fetch_readme(): with open('README.md', encoding='utf-8') as f: return f.read() def get_version(): setup_file_path = os.path.abspath(__file__) project_path = os.path.dirname(setup_file_path) version_txt_path = os.path.join(project_path, 'version.txt') version_py_path = os.path.join(project_path, 'colossalai/version.py') with open(version_txt_path) as f: version = f.read().strip() # write version into version.py with open(version_py_path, 'w') as f: f.write(f"__version__ = '{version}'\n") if build_cuda_ext: torch_version = '.'.join(torch.__version__.split('.')[:2]) cuda_version = '.'.join(get_cuda_bare_metal_version(CUDA_HOME)[1:]) else: torch_version = None cuda_version = None if torch_version: f.write(f'torch = "{torch_version}"\n') else: f.write('torch = None\n') if cuda_version: f.write(f'cuda = "{cuda_version}"\n') else: f.write('cuda = None\n') return version if build_cuda_ext: build_cuda_ext = check_cuda_availability(CUDA_HOME) and check_cuda_torch_binary_vs_bare_metal(CUDA_HOME) if build_cuda_ext: # Set up macros for forward/backward compatibility hack around # https://github.com/pytorch/pytorch/commit/4404762d7dd955383acee92e6f06b48144a0742e # and # https://github.com/NVIDIA/apex/issues/456 # https://github.com/pytorch/pytorch/commit/eb7b39e02f7d75c26d8a795ea8c7fd911334da7e#diff-4632522f237f1e4e728cb824300403ac from op_builder import ALL_OPS for name, builder_cls in ALL_OPS.items(): print(f'===== Building Extension {name} =====') ext_modules.append(builder_cls().builder()) # always put not nightly branch as the if branch # otherwise github will treat colossalai-nightly as the project name # and it will mess up with the dependency graph insights if not is_nightly: version = get_version() package_name = 'colossalai' else: # use date as the nightly version version = datetime.today().strftime('%Y.%m.%d') package_name = 'colossalai-nightly' setup(name=package_name, version=version, packages=find_packages(exclude=( 'benchmark', 'docker', 'tests', 'docs', 'examples', 'tests', 'scripts', 'requirements', '*.egg-info', )), description='An integrated large-scale model training system with efficient parallelization techniques', long_description=fetch_readme(), long_description_content_type='text/markdown', license='Apache Software License 2.0', url='https://www.colossalai.org', project_urls={ 'Forum': 'https://github.com/hpcaitech/ColossalAI/discussions', 'Bug Tracker': 'https://github.com/hpcaitech/ColossalAI/issues', 'Examples': 'https://github.com/hpcaitech/ColossalAI-Examples', 'Documentation': 'http://colossalai.readthedocs.io', 'Github': 'https://github.com/hpcaitech/ColossalAI', }, ext_modules=ext_modules, cmdclass={'build_ext': BuildExtension} if ext_modules else {}, install_requires=fetch_requirements('requirements/requirements.txt'), entry_points=''' [console_scripts] colossalai=colossalai.cli:cli ''', python_requires='>=3.6', classifiers=[ 'Programming Language :: Python :: 3', 'License :: OSI Approved :: Apache Software License', 'Environment :: GPU :: NVIDIA CUDA', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: System :: Distributed Computing', ], package_data={ 'colossalai': [ '_C/*.pyi', 'kernel/cuda_native/csrc/*', 'kernel/cuda_native/csrc/kernel/*', 'kernel/cuda_native/csrc/kernels/include/*' ] })