import os from functools import partial from pathlib import Path import colossalai import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.engine.schedule import PipelineSchedule from colossalai.logging import get_dist_logger from colossalai.trainer import Trainer from colossalai.utils import MultiTimer, free_port, get_dataloader from torch.optim import Adam from torchvision import transforms from torchvision.datasets import CIFAR10 from torchvision.models import resnet18 from colossalai.testing import rerun_on_exception BATCH_SIZE = 4 IMG_SIZE = 32 NUM_EPOCHS = 200 CONFIG = dict(parallel=dict(pipeline=2),) def run_trainer_with_pipeline(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') # build model model = resnet18(num_classes=10) if gpc.get_local_rank(ParallelMode.PIPELINE) == 0: model = nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool, model.layer1, model.layer2) elif gpc.get_local_rank(ParallelMode.PIPELINE) == 1: class Flatten(nn.Module): def forward(self, x): return torch.flatten(x, 1) model = nn.Sequential(model.layer3, model.layer4, model.avgpool, Flatten(), model.fc) # build dataloaders train_dataset = CIFAR10(root=Path(os.environ['DATA']), download=True, transform=transforms.Compose([ transforms.Resize(size=(IMG_SIZE, IMG_SIZE)), transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ])) train_dataloader = get_dataloader(dataset=train_dataset, shuffle=True, batch_size=BATCH_SIZE, pin_memory=True, drop_last=True) # build optimizer optimizer = Adam(model.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss() engine, train_dataloader, *args = colossalai.initialize(model=model, optimizer=optimizer, criterion=criterion, train_dataloader=train_dataloader) logger = get_dist_logger() logger.info("engine is built", ranks=[0]) pipe_schedule = PipelineSchedule(num_microbatches=2) timer = MultiTimer() trainer = Trainer(engine=engine, schedule=pipe_schedule, logger=logger, timer=timer) logger.info("trainer is built", ranks=[0]) logger.info("start training", ranks=[0]) trainer.fit(train_dataloader=train_dataloader, epochs=NUM_EPOCHS, max_steps=3, display_progress=True, test_interval=5) gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist @rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*") def test_trainer_with_pipeline(): world_size = 4 run_func = partial(run_trainer_with_pipeline, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_trainer_with_pipeline()