#!/usr/bin/env python # -*- encoding: utf-8 -*- from typing import Iterable import torch from colossalai.engine import Engine from ._base_schedule import BaseSchedule from colossalai.utils import conditional_context class NonPipelineSchedule(BaseSchedule): """A helper schedule class for no pipeline parallelism running environment. During one process, it loads a batch of dataset and feeds it to the model. After getting the output and calculating the loss, it will use :meth:`step` to update the parameters if it is in training mode. Args: batch_data_process_func (Callable, optional): The preprocessing function which receives a batch of data, and it will be executed in load_batch. """ def forward_backward_step(self, engine: Engine, data_iter: Iterable, forward_only: bool = False, return_loss: bool = True, return_output_label: bool = True): """The process function that loads a batch of dataset and feeds it to the model. The returned labels and loss will None if :attr:`return_loss` is False. Args: engine (colossalai.engine.Engine): Colossalai engine for training and inference. data_iter (Iterable): Dataloader as the form of an iterator, obtained by calling iter(dataloader). forward_only (bool, optional): If True, the model is run for the forward pass, else back propagation will be executed. return_loss (bool, optional): Loss will be returned if True. return_output_label (bool, optional): Output and label will be returned if True. Returns: Tuple[:class:`torch.Tensor`]: A tuple of (output, label, loss), loss and label could be None. """ assert forward_only or return_loss, \ "The argument 'return_loss' has to be True when 'forward_only' is False, but got False." data, label = self.load_batch(data_iter) # forward with conditional_context(torch.no_grad(), enable=forward_only): output = self._call_engine(engine, data) if return_loss: loss = self._call_engine_criterion(engine, output, label) if not forward_only: engine.backward(loss) if return_output_label: if return_loss: return output, label, loss else: return output, label, None else: if return_loss: return None, None, loss else: return None, None, None