# coding=utf-8 from pathlib import Path import torch import torch.nn as nn from typing import List, Dict, Mapping, OrderedDict, Optional, Tuple from colossalai.tensor.d_tensor.d_tensor import DTensor import re SAFE_WEIGHTS_NAME = "model.safetensors" WEIGHTS_NAME = "pytorch_model.bin" SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json" WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json" # ====================================== # General helper functions # ====================================== def calculate_tensor_size(tensor: torch.Tensor) -> float: """ Calculate the size of a parameter in MB. Used to compute whether a group of params exceed the shard size. If so, a new shard should be created. Args: tenosr (torch.Tensor): the tensor to calculate size for. Returns: float: size of the tensor in MB. """ return tensor.numel() * tensor.element_size() / 1024 / 1024 def is_safetensors_available() -> bool: """ Check whether safetensors is available. Returns: bool: whether safetensors is available. """ try: import safetensors return True except ImportError: return False def is_dtensor_checkpoint(checkpoint_file_path: str) -> bool: """ Check whether the checkpoint file is a dtensor checkpoint. Args: checkpoint_file_path (str): path to the checkpoint file. Returns: bool: whether the checkpoint file is a dtensor checkpoint. """ if checkpoint_file_path.endswith('.*.safetensors') or checkpoint_file_path.endswith('.*.bin'): return True else: return False def is_safetensor_checkpoint(checkpoint_file_path: str) -> bool: """ Check whether the checkpoint file is a safetensor checkpoint. Args: checkpoint_file_path (str): path to the checkpoint file. Returns: bool: whether the checkpoint file is a safetensor checkpoint. """ if checkpoint_file_path.endswith('.safetensors'): return True else: return False # ====================================== # Helper functions for saving shard file # ====================================== def shard_checkpoint(state_dict: torch.Tensor, max_shard_size: int = 1024, weights_name: str = WEIGHTS_NAME): """ Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a given size. """ sharded_state_dicts = [] current_block = {} current_block_size = 0 total_size = 0 for key, weight in state_dict.items(): if type(weight) != DTensor: weight_size = calculate_tensor_size(weight) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: sharded_state_dicts.append(current_block) current_block = {} current_block_size = 0 current_block[key] = weight current_block_size += weight_size total_size += weight_size # Add the last block sharded_state_dicts.append(current_block) # If we only have one shard, we return it if len(sharded_state_dicts) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index weight_map = {} shards = {} for idx, shard in enumerate(sharded_state_dicts): shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin") shard_file = shard_file.replace( ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors" ) shards[shard_file] = shard for key in shard.keys(): weight_map[key] = shard_file # Add the metadata metadata = {"total_size": total_size} index = {"metadata": metadata, "weight_map": weight_map} return shards, index def load_shard_state_dict(checkpoint_file: Path, use_safetensors: bool =False): """ load shard state dict into model """ if use_safetensors and not checkpoint_file.suffix == ".safetensors": raise Exception("load the model using `safetensors`, but no file endwith .safetensors") if use_safetensors: from safetensors.torch import safe_open from safetensors.torch import load_file as safe_load_file with safe_open(checkpoint_file, framework="pt") as f: metadata = f.metadata() if metadata["format"] != "pt": raise NotImplementedError( f"Conversion from a {metadata['format']} safetensors archive to PyTorch is not implemented yet." ) return safe_load_file(checkpoint_file) else: return torch.load(checkpoint_file) def load_state_dict_into_model(model: nn.Module, state_dict: torch.Tensor, missing_keys: List, strict: bool = False): r"""Copies parameters and buffers from :attr:`state_dict` into this module and its descendants. Args: state_dict (dict): a dict containing parameters and persistent buffers. """ if not isinstance(state_dict, Mapping): raise TypeError("Expected state_dict to be dict-like, got {}.".format(type(state_dict))) unexpected_keys: List[str] = [] sub_missing_keys: List[str] = [] error_msgs: List[str] = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = OrderedDict(state_dict) if metadata is not None: state_dict._metadata = metadata def load(module: nn.Module, state_dict, prefix=""): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) args = (state_dict, prefix, local_metadata, True, [], [], error_msgs) # Parameters of module and children will start with prefix. We can exit early if there are none in this # state_dict if len([key for key in state_dict if key.startswith(prefix)]) > 0: module._load_from_state_dict(*args) for name, child in module._modules.items(): if child is not None: load(child, state_dict, prefix + name + ".") load(model, state_dict, "") del load # deal with missing key if len(missing_keys) > 0: deleted_keys = [] for key in missing_keys: if key not in sub_missing_keys: deleted_keys.append(key) for key in deleted_keys: missing_keys.remove(key) if strict: if len(unexpected_keys) > 0: error_msgs = 'Unexpected key(s) in state_dict: {}. '.format( ', '.join('"{}"'.format(k) for k in unexpected_keys)) raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( model.__class__.__name__, "\n\t".join(error_msgs))) # ====================================== # Helper functions for saving state dict # ====================================== def save_state_dict(state_dict: dict, checkpoint_file_path: str, use_safetensors: bool) -> None: """ Save state dict to checkpoint. Args: state_dict (dict): state dict. checkpoint_file_path (str): path to the checkpoint file. use_safetensors (bool): whether to use safetensors to save the checkpoint. """ if use_safetensors: assert is_safetensors_available(), "safetensors is not available." assert checkpoint_file_path.endswith('.safetensors'), \ "safetensors only supports .safetensors suffix for checkpoint file." from safetensors.torch import save_file as safe_save_file safe_save_file(state_dict, checkpoint_file_path, metadata={"format": "pt"}) else: torch.save(state_dict, checkpoint_file_path) def save_dtensor(name: str, tensor: torch.Tensor, index_file: "CheckpointIndexFile", use_safetensors: bool) -> None: """ Save distributed tensor to checkpoint. This checkpoint will be a dictionary which contains only one tensor. Args: tensor (Tensor): tensor to be saved. index_file (CheckpointIndexFile): path to the checkpoint file. size_per_shard (int): size per shard in MB. """ root_path = index_file.root_path output_root_path = root_path.joinpath('dtensor') # create directory output_root_path.mkdir(exist_ok=True) # save tensor to this directory # TODO(YuliangLiu): get index of the tensor shard # e.g. index = index = 0 # save tensor to file ckpt_file_name = generate_dtensor_file_name(name, index, use_safetensors) ckpt_file_path = output_root_path.joinpath(ckpt_file_name) # dtensor ckpt file always contains only one tensor state_dict = {name: tensor} save_state_dict(state_dict, str(ckpt_file_path), use_safetensors) # update the weight map # * means all shards ckpt_file_name_in_weight_map = 'dtensor/' + generate_dtensor_file_name(name, '*', use_safetensors) index_file.append_weight_map(name, ckpt_file_name_in_weight_map) def get_checkpoint_file_suffix(use_safetensors: bool) -> str: """ Get checkpoint file suffix. Args: use_safetensors (bool): whether to use safetensors to save the checkpoint. Returns: str: checkpoint file suffix. """ if use_safetensors: return '.safetensors' else: return '.bin' def generate_checkpoint_shard_file_name(index: int, total_number: int, use_safetensors: bool, prefix: str = None) -> str: """ Generate checkpoint shard file name. Args: index (int): index of the shard. total_number (int): total number of shards. use_safetensors (bool): whether to use safetensors to save the checkpoint. prefix (str): prefix of the shard file name. Default: None. Returns: str: checkpoint shard file name. """ suffix = get_checkpoint_file_suffix(use_safetensors) if prefix is None: return f"{index:05d}-of-{total_number:05d}.{suffix}" else: return f"{prefix}-{index:05d}-of-{total_number:05d}.{suffix}" def generate_dtensor_file_name(param_name: str, index: int, use_safetensors: bool) -> str: """ Generate dtensor file name. Args: param_name (str): name of the distributed parameter. index (int): index of the shard. use_safetensors (bool): whether to use safetensors to save the checkpoint. Returns: str: dtensor file name. """ suffix = get_checkpoint_file_suffix(use_safetensors) return f'{param_name}.{index}.{suffix}' def save_state_dict_as_shard( state_dict: dict, checkpoint_path: str, index: int, total_number: int, use_safetensors: bool, prefix: str = None, ) -> None: """ Save state dict as shard. Args: state_dict (dict): state dict. checkpoint_path (str): path to the checkpoint file. index (int): index of the shard. total_number (int): total number of shards. prefix (str): prefix of the shard file name. use_safetensors (bool): whether to use safetensors to save the checkpoint. """ # generate the shard name shard_file_name = generate_checkpoint_shard_file_name(index, total_number, use_safetensors, prefix) shard_file_path = Path(checkpoint_path).joinpath(shard_file_name).absolute() # save the shard save_state_dict(state_dict, str(shard_file_path), use_safetensors) # ======================================== # Helper functions for loading state dict # ======================================== def has_index_file(checkpoint_path: str) -> Tuple[bool, Optional[Path]]: """ Check whether the checkpoint has an index file. Args: checkpoint_path (str): path to the checkpoint. Returns: Tuple[bool, Optional[Path]]: a tuple of (has_index_file, index_file_path) """ checkpoint_path = Path(checkpoint_path) if checkpoint_path.is_file(): # check if it is .index.json reg = re.compile("(.*?).index((\..*)?).json") if reg.fullmatch(checkpoint_path.name) is not None: return True, checkpoint_path else: return False, None elif checkpoint_path.is_dir(): # check if there is only one a file ending with .index.json in this directory index_files = list(checkpoint_path.glob('*.index.*json')) # if we found a .index.json file, make sure there is only one if len(index_files) > 0: assert len( index_files ) == 1, f'Expected to find one .index.json file in {checkpoint_path}, but found {len(index_files)}' if len(index_files) == 1: return True, index_files[0] else: return False, None def load_state_dict(checkpoint_file_path: Path): """ Load state dict from checkpoint. Args: checkpoint_file_path (Path): path to the checkpoint file. Returns: dict: state dict. """ assert not is_dtensor_checkpoint(checkpoint_file_path), \ f'Cannot load state dict from dtensor checkpoint {checkpoint_file_path}, you should convert the distributed tensors to gathered tensors with our CLI offline.' if is_safetensor_checkpoint(checkpoint_file_path): assert is_safetensors_available(), \ f'Cannot load state dict from safetensor checkpoint {checkpoint_file_path}, because safetensors is not available. Please install safetensors first with pip install safetensors.' # load with safetensors from safetensors import safe_open state_dict = {} with safe_open(checkpoint_file_path, framework="pt", device="cpu") as f: for k in f.keys(): state_dict[k] = f.get_tensor(k) return state_dict else: # load with torch return torch.load(checkpoint_file_path) def add_variant(weights_name: str, variant: Optional[str] = None) -> str: if variant is not None and len(variant) > 0: splits = weights_name.split(".") splits = splits[:-1] + [variant] + splits[-1:] weights_name = ".".join(splits) return weights_name