from copy import deepcopy from typing import Dict, List import torch from torch.fx.node import Node from colossalai._analyzer.fx.node_util import MetaInfo from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( CommAction, CommType, OperationData, OperationDataType, TrainCycleItem, ) from colossalai.device.device_mesh import DeviceMesh from colossalai.tensor.comm_spec import CommSpec from colossalai.tensor.shape_consistency import ShapeConsistencyManager from colossalai.tensor.sharding_spec import ShardingSpec shape_consistency_manager = ShapeConsistencyManager() def runtime_apply(node: Node, origin_dict: Dict, input_dict: Dict, node_index: int, user_node_index: int): """ This method will be invoked during runtime to do the shape consistency, which make sure the activations is converted into the user node expected form. """ origin_sharding_spec = origin_dict[node_index] target_sharding_spec = input_dict[node_index][user_node_index] return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec) def runtime_apply_for_iterable_object(node: Node, origin_dict: Dict, input_dict: Dict, node_index: int, user_node_index: int): """ This method will be invoked during runtime to do the shape consistency, which makes sure the activations in type of tuple or list is converted into the user node expected form. """ rst = [] for index, (origin_sharding_spec, target_sharding_spec) in enumerate(zip(origin_dict[node_index], input_dict[node_index][user_node_index])): rst.append( shape_consistency_manager.apply_for_autoparallel_runtime(node[index], origin_sharding_spec, target_sharding_spec)) rst = type(node)(rst) return rst def runtime_comm_spec_apply(tensor: torch.Tensor, comm_actions_dict: Dict, node_index: int, op_data_name: str): """ This method will be invoked during runtime to apply the comm action following the instruction of comm spec. """ comm_action = comm_actions_dict[node_index][op_data_name] if isinstance(comm_action.comm_spec, CommSpec): rst = comm_action.comm_spec.covert_spec_to_action(tensor) else: origin_sharding_spec = comm_action.comm_spec['src_spec'] tgt_sharding_spec = comm_action.comm_spec['tgt_spec'] rst = shape_consistency_manager.apply_for_autoparallel_runtime(tensor, origin_sharding_spec, tgt_sharding_spec) return rst def _preprocess_graph(nodes: List[Node]): """ This method is used to extract all the placeholders with sharding information, and mapping the nodes into the index of the origin graph. """ # mapping the node into the origin graph index node_to_index_dict = {} index = 0 for node in nodes: if node.target == 'sharding_spec_convert_dict': input_dict_node = node continue if node.target == 'origin_node_sharding_spec_dict': origin_dict_node = node continue if node.target == 'comm_actions_dict': comm_actions_dict_node = node continue if not hasattr(node, 'best_strategy'): continue node_to_index_dict[node] = index index += 1 return input_dict_node, origin_dict_node, comm_actions_dict_node, node_to_index_dict def _shape_consistency_apply(gm: torch.fx.GraphModule): """ This pass is used to add the shape consistency node to the origin graph. """ mod_graph = gm.graph nodes = tuple(mod_graph.nodes) input_dict_node, origin_dict_node, _, node_to_index_dict = _preprocess_graph(nodes) for node in nodes: if not hasattr(node, 'best_strategy') or node.op == 'output': continue for user_node_index, user_node in enumerate(node.strategies_vector.successor_nodes): if isinstance(node.sharding_spec, (list, tuple)): assert isinstance( node.target_sharding_specs, (list, tuple)), 'target sharding specs should be tuple or list when node.sharding_spec is tuple or list' total_difference = 0 for sharding_spec, target_sharding_spec in zip(node.sharding_spec, node.target_sharding_specs[user_node_index]): total_difference += sharding_spec.sharding_sequence_difference(target_sharding_spec) if total_difference == 0: continue with mod_graph.inserting_before(user_node): shape_consistency_node = mod_graph.create_node('call_function', runtime_apply_for_iterable_object, args=(node, origin_dict_node, input_dict_node, node_to_index_dict[node], user_node_index)) else: assert isinstance(node.sharding_spec, ShardingSpec), 'node.sharding_spec should be type of ShardingSpec, tuple or list.' if node.sharding_spec.sharding_sequence_difference(node.target_sharding_specs[user_node_index]) == 0: continue with mod_graph.inserting_before(user_node): shape_consistency_node = mod_graph.create_node('call_function', runtime_apply, args=(node, origin_dict_node, input_dict_node, node_to_index_dict[node], user_node_index)) if hasattr(user_node.meta['info'], 'activation_checkpoint'): MetaInfo(shape_consistency_node, mod_dir=user_node.meta['info'].mod_dir, activation_checkpoint=tuple(user_node.meta['info'].activation_checkpoint)) new_args = list(user_node.args) new_kwargs = dict(user_node.kwargs) # the origin node may be a positional argument or key word argument of user node if node in new_args: # substitute the origin node with shape_consistency_node origin_index_args = new_args.index(node) new_args[origin_index_args] = shape_consistency_node user_node.args = tuple(new_args) elif str(node) in new_kwargs: # substitute the origin node with shape_consistency_node new_kwargs[str(node)] = shape_consistency_node user_node.kwargs = new_kwargs return gm def _comm_spec_apply(gm: torch.fx.GraphModule): """ This pass is used to add the comm spec apply node to the origin graph. """ mod_graph = gm.graph nodes = tuple(mod_graph.nodes) _, _, comm_actions_dict_node, node_to_index_dict = _preprocess_graph(nodes) for node in nodes: if not hasattr(node, 'best_strategy') or node.op == 'output': continue comm_actions = node.best_strategy.communication_actions for op_data, comm_action in comm_actions.items(): if comm_action.comm_type == CommType.HOOK: continue if comm_action.comm_type == CommType.BEFORE: if op_data.type == OperationDataType.OUTPUT: comm_object = node elif comm_action.key_for_kwarg is not None: comm_object = node.kwargs[comm_action.key_for_kwarg] else: comm_object = node.args[comm_action.arg_index] with mod_graph.inserting_before(node): comm_spec_apply_node = mod_graph.create_node('call_function', runtime_comm_spec_apply, args=(comm_object, comm_actions_dict_node, node_to_index_dict[node], op_data.name)) # the origin node may be a positional argument or key word argument of user node if comm_action.key_for_kwarg is not None: # substitute the origin node with comm_spec_apply_node new_kwargs = dict(node.kwargs) new_kwargs[comm_action.key_for_kwarg] = comm_spec_apply_node node.kwargs = new_kwargs else: # substitute the origin node with comm_spec_apply_node new_args = list(node.args) new_args[comm_action.arg_index] = comm_spec_apply_node node.args = tuple(new_args) elif comm_action.comm_type == CommType.AFTER: with mod_graph.inserting_after(node): comm_spec_apply_node = mod_graph.create_node('call_function', runtime_comm_spec_apply, args=(node, comm_actions_dict_node, node_to_index_dict[node], op_data.name)) user_list = list(node.users.keys()) for user in user_list: if user == comm_spec_apply_node: continue new_args = list(user.args) new_kwargs = dict(user.kwargs) # the origin node may be a positional argument or key word argument of user node if node in new_args: # substitute the origin node with comm_spec_apply_node new_args[new_args.index(node)] = comm_spec_apply_node user.args = tuple(new_args) elif str(node) in new_kwargs: # substitute the origin node with comm_spec_apply_node new_kwargs[str(node)] = comm_spec_apply_node user.kwargs = new_kwargs if hasattr(node.meta['info'], 'activation_checkpoint'): MetaInfo(comm_spec_apply_node, mod_dir=node.meta['info'].mod_dir, activation_checkpoint=tuple(node.meta['info'].activation_checkpoint)) return gm def _act_annotataion_pass(gm: torch.fx.GraphModule): """ This pass is used to add the act annotation to the new inserted nodes. """ mod_graph = gm.graph nodes = tuple(mod_graph.nodes) for node in nodes: if not hasattr(node.meta, 'activation_checkpoint'): from .runtime_preparation_pass import size_processing user_act_annotation = -1 input_act_annotation = -1 for user_node in node.users.keys(): if 'activation_checkpoint' in user_node.meta: user_act_annotation = user_node.meta['activation_checkpoint'] break for input_node in node._input_nodes.keys(): if 'activation_checkpoint' in input_node.meta: input_act_annotation = input_node.meta['activation_checkpoint'] break if user_act_annotation == input_act_annotation and user_act_annotation != -1: node.meta['activation_checkpoint'] = user_act_annotation return gm def runtime_apply_pass(gm: torch.fx.GraphModule): """ The method manages all the passes acting on the distributed training runtime. """ gm = _shape_consistency_apply(gm) gm = _comm_spec_apply(gm) return gm