from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors class TensorBucket: def __init__(self, size): self._max_size = size self._current_size = 0 self._bucket = [] @property def max_size(self): return self._max_size @property def current_size(self): return self._current_size def is_full_or_oversized(self): return self._current_size >= self._max_size def is_empty(self): return len(self._bucket) == 0 def add_to_bucket(self, tensor, allow_oversize=False): tensor_size = tensor.numel() if not allow_oversize and self.will_exceed_max_size(tensor_size): msg = f"The param bucket max size {self._max_size} is exceeded" \ + f"by tensor (size {tensor_size})" raise RuntimeError(msg) self._bucket.append(tensor) self._current_size += tensor_size def will_exceed_max_size(self, tensor_size): expected_size = self._current_size + tensor_size return expected_size > self._max_size def get_bucket(self): return self._bucket def empty(self): self._bucket = [] self._size = 0 def flatten(self): return _flatten_dense_tensors(self._bucket) def unflatten_and_copy(self, flat_tensor): unflattened_tensor_list = _unflatten_dense_tensors(flat_tensor, self._bucket) for old, new in zip(self._bucket, unflattened_tensor_list): old.copy_(new)