from torch.optim.lr_scheduler import _LRScheduler from colossalai.registry import LR_SCHEDULERS from .delayed import WarmupScheduler @LR_SCHEDULERS.register_module class PolynomialLR(_LRScheduler): """Polynomial learning rate scheduler. Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. end_lr (float, optional): Minimum learning rate, defaults to 0.0001. power (float, optional): The power of polynomial, defaults to 1.0. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, total_steps: int, end_lr: float = 0.0001, power: float = 1.0, last_epoch: int = -1, **kwargs): if end_lr < 0: raise ValueError(f'end_lr must >= 0, got {end_lr}') self.total_steps = total_steps self.end_lr = end_lr self.power = power super().__init__(optimizer, last_epoch=last_epoch) def get_lr(self): return self._get_closed_form_lr() def _get_closed_form_lr(self): return [(base_lr - self.end_lr) * ((1 - min(self.last_epoch, self.total_steps) / self.total_steps)**self.power) + self.end_lr for base_lr in self.base_lrs] @LR_SCHEDULERS.register_module class PolynomialWarmupLR(WarmupScheduler): """Polynomial learning rate scheduler with warmup. Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. warmup_steps (int, optional): Number of warmup steps, defaults to 0. end_lr (float, optional): Minimum learning rate, defaults to 0.0001. power (float, optional): The power of polynomial, defaults to 1.0. last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, end_lr: float = 0.0001, power: float = 1.0, last_epoch: int = -1, **kwargs): base_scheduler = PolynomialLR(optimizer, total_steps - warmup_steps, end_lr=end_lr, power=power) super().__init__(optimizer, warmup_steps, base_scheduler, last_epoch=last_epoch)