from typing import Optional import torch.nn as nn from transformers.models.gpt2.configuration_gpt2 import GPT2Config from transformers.models.gpt2.modeling_gpt2 import GPT2Model from ..base import RewardModel class GPTRM(RewardModel): """ GPT Reward model. Args: pretrained (str): Pretrained model name or path. config (GPT2Config): Model config. checkpoint (bool): Enable gradient checkpointing. lora_rank (int): Rank of the low-rank approximation. lora_train_bias (str): LoRA bias training mode. """ def __init__(self, pretrained: Optional[str] = None, config: Optional[GPT2Config] = None, checkpoint: bool = False, lora_rank: int = 0, lora_train_bias: str = 'none') -> None: if pretrained is not None: model = GPT2Model.from_pretrained(pretrained) elif config is not None: model = GPT2Model(config) else: model = GPT2Model(GPT2Config()) if checkpoint: model.gradient_checkpointing_enable() value_head = nn.Linear(model.config.n_embd, 1) value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.n_embd + 1)) super().__init__(model, value_head, lora_rank, lora_train_bias)