import pytest from colossalai.utils.cuda import get_current_device from colossalai.zero.shard_utils.tensor_utils import colo_tensor_mem_usage, colo_model_data_tensor_move, colo_model_data_tensor_move_inline, colo_model_data_move_to_cpu, colo_model_tensor_clone from colossalai.utils.memory_utils.utils import colo_set_process_memory_fraction, colo_cuda_memory_capacity from colossalai.utils import free_port from colossalai.zero.sharded_param.tensorful_state import StatefulTensor import colossalai import torch from functools import partial import torch.multiprocessing as mp def _run_colo_tensor_mem_usage(): for i in range(1): if i == 1: t1 = StatefulTensor(torch.randn(2,2)) t2 = StatefulTensor(torch.randn(4,4)) c1 , g1 = colo_tensor_mem_usage(t1) c2 , g2 = colo_tensor_mem_usage(t2) assert c1*4 == c2 assert g1*4 == g2 else: t1 = torch.randn(2,2) t2 = torch.randn(4,4) c1 , g1 = colo_tensor_mem_usage(t1) c2 , g2 = colo_tensor_mem_usage(t2) assert c1*4 == c2 assert g1*4 == g2 def _run_colo_set_process_memory_fraction_and_colo_cuda_memory_capacity(): frac1 = colo_cuda_memory_capacity() colo_set_process_memory_fraction(0.5) frac2 = colo_cuda_memory_capacity() assert frac2*2 == frac1 def _run_colo_model_data_tensor_move_inline(): for t in [StatefulTensor(torch.randn(2,3)), torch.randn(2,3)]: colo_model_data_tensor_move_inline(t, torch.device(f"cuda:{get_current_device()}")) assert t.device == torch.device(f"cuda:{get_current_device()}") def _run_colo_model_data_tensor_move(): for t in [(StatefulTensor(torch.ones(2, 3)), StatefulTensor(torch.zeros(2, 3).cuda(get_current_device()))), (torch.ones(2, 3), torch.zeros(2, 3).cuda(get_current_device()))]: cpu_t, cuda_t = t colo_model_data_tensor_move(cpu_t, cuda_t) assert cuda_t.device == torch.device(f"cuda:{get_current_device()}") def _run_colo_model_data_move_to_cpu(): for t in [StatefulTensor(torch.randn(2,2)), torch.randn(4,4)]: colo_model_data_move_to_cpu(t) assert t.device == torch.device("cpu") def _run_colo_model_tensor_clone(): for t in [StatefulTensor(torch.randn(2,2).cuda(torch.cuda.current_device())), torch.randn(4,4).cuda(torch.cuda.current_device())]: if issubclass(type(t), StatefulTensor): assert t.payload.device == torch.device(f"cuda:{get_current_device()}") else: assert t.device == torch.device(f"cuda:{get_current_device()}") p = colo_model_tensor_clone(t, torch.device(f"cuda:{get_current_device()}")) assert p.device == torch.device(f"cuda:{get_current_device()}") for i in range(2): for j in range(2): if issubclass(type(t), StatefulTensor): assert t.payload.device == p.device assert t.payload[i][j] == p[i][j] else: assert t.device == p.device assert t[i][j] == p[i][j] def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') _run_colo_set_process_memory_fraction_and_colo_cuda_memory_capacity() _run_colo_model_data_tensor_move_inline() _run_colo_model_data_tensor_move() _run_colo_tensor_mem_usage() _run_colo_model_data_move_to_cpu() _run_colo_model_tensor_clone() @pytest.mark.dist @pytest.mark.parametrize("world_size", [4, 5]) def test_tensor_move(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_tensor_move(4)