from functools import partial import colossalai import pytest import torch import torch.multiprocessing as mp from colossalai.amp.amp_type import AMP_TYPE from colossalai.logging import get_dist_logger from colossalai.trainer import Trainer from colossalai.utils import MultiTimer, free_port from tests.components_to_test.registry import non_distributed_component_funcs BATCH_SIZE = 16 IMG_SIZE = 32 NUM_EPOCHS = 200 CONFIG = dict( # Config fp16=dict(mode=AMP_TYPE.TORCH)) def run_trainer_no_pipeline(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') test_models = ['repeated_computed_layers', 'resnet18', 'nested_model'] for name in test_models: get_components_func = non_distributed_component_funcs.get_callable(name) model_builder, train_dataloader, test_dataloader, optimizer_builder, criterion = get_components_func() model = model_builder() optimizer = optimizer_builder(model) engine, train_dataloader, *_ = colossalai.initialize(model=model, optimizer=optimizer, criterion=criterion, train_dataloader=train_dataloader) logger = get_dist_logger() logger.info("engine is built", ranks=[0]) timer = MultiTimer() trainer = Trainer(engine=engine, logger=logger, timer=timer) logger.info("trainer is built", ranks=[0]) logger.info("start training", ranks=[0]) trainer.fit(train_dataloader=train_dataloader, test_dataloader=test_dataloader, epochs=NUM_EPOCHS, max_steps=5, display_progress=True, test_interval=5) torch.cuda.empty_cache() @pytest.mark.dist def test_trainer_no_pipeline(): world_size = 4 run_func = partial(run_trainer_no_pipeline, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_trainer_no_pipeline()