from functools import partial import colossalai import pytest import torch.multiprocessing as mp from colossalai.amp import AMP_TYPE from colossalai.context import Config from colossalai.core import global_context as gpc from colossalai.utils import free_port from tests.components_to_test.registry import non_distributed_component_funcs CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)), fp16=dict(mode=None), clip_grad_norm=1.0) def run_train(): test_models = ['repeated_computed_layers', 'resnet18', 'repeated_computed_layers'] # FIXME: test bert for model_name in test_models: get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, _, optimizer_builder, criterion = get_components_func() model = model_builder(checkpoint=False) engine, train_dataloader, *args = colossalai.initialize(model=model, optimizer=optimizer_builder(model), criterion=criterion, train_dataloader=train_dataloader) try: engine.train() for data, label in train_dataloader: engine.zero_grad() data = data.cuda() label = label.cuda() if criterion: output = engine(data) loss = engine.criterion(output, label) else: loss = engine(data, label) engine.backward(loss) engine.step() break except IndexError: # if using apex amp, NetWithRepeatedlyComputedLayers will raise an index out of range issue # the following check fails in apex # if cached_x.grad_fn.next_functions[1][0].variable is not x: continue def run_with_no_amp(): run_train() def run_with_torch_amp(): # hack config CONFIG['fp16']['mode'] = AMP_TYPE.TORCH gpc._config = Config(CONFIG) run_train() def run_with_apex_amp(): # hack config CONFIG['fp16']['mode'] = AMP_TYPE.APEX gpc._config = Config(CONFIG) run_train() def run_with_naive_amp(): # hack config CONFIG['fp16']['mode'] = AMP_TYPE.NAIVE gpc._config = Config(CONFIG) run_train() def run_engine(rank, world_size, port): # init dist env colossalai.launch(config=dict(), rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_with_no_amp() run_with_torch_amp() run_with_apex_amp() run_with_naive_amp() @pytest.mark.dist def test_engine(): world_size = 4 run_func = partial(run_engine, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_engine()