#!/usr/bin/env python import torch import torch.nn as nn from colossalai.nn import CheckpointModule from .utils.dummy_data_generator import DummyDataGenerator from .registry import non_distributed_component_funcs class NetWithRepeatedlyComputedLayers(CheckpointModule): """ This model is to test with layers which go through forward pass multiple times. In this model, the fc1 and fc2 call forward twice """ def __init__(self, checkpoint=False) -> None: super().__init__(checkpoint=checkpoint) self.fc1 = nn.Linear(5, 5) self.fc2 = nn.Linear(5, 5) self.fc3 = nn.Linear(5, 2) self.layers = [self.fc1, self.fc2, self.fc1, self.fc2, self.fc3] def forward(self, x): for layer in self.layers: x = layer(x) return x class DummyDataLoader(DummyDataGenerator): def generate(self): data = torch.rand(16, 5) label = torch.randint(low=0, high=2, size=(16,)) return data, label @non_distributed_component_funcs.register(name='repeated_computed_layers') def get_training_components(): def model_builder(checkpoint=True): return NetWithRepeatedlyComputedLayers(checkpoint) trainloader = DummyDataLoader() testloader = DummyDataLoader() def optim_builder(model): return torch.optim.Adam(model.parameters(), lr=0.001) criterion = torch.nn.CrossEntropyLoss() return model_builder, trainloader, testloader, optim_builder, criterion