import pytest import colossalai from colossalai.utils.cuda import get_current_device from colossalai.zero.sharded_param import (StatefulTensor, colo_tensor_mem_usage, colo_model_data_tensor_move, colo_model_data_tensor_move_inline, colo_model_data_move_to_cpu, colo_model_tensor_clone) from colossalai.utils import free_port from colossalai.testing import rerun_if_address_is_in_use import torch from functools import partial import torch.multiprocessing as mp def _run_colo_tensor_mem_usage(): for i in range(1): if i == 1: t1 = StatefulTensor(torch.randn(2, 2)) t2 = StatefulTensor(torch.randn(4, 4)) c1, g1 = colo_tensor_mem_usage(t1) c2, g2 = colo_tensor_mem_usage(t2) assert c1 * 4 == c2 assert g1 * 4 == g2 else: t1 = torch.randn(2, 2) t2 = torch.randn(4, 4) c1, g1 = colo_tensor_mem_usage(t1) c2, g2 = colo_tensor_mem_usage(t2) assert c1 * 4 == c2 assert g1 * 4 == g2 def _run_colo_model_data_tensor_move_inline(): for t in [StatefulTensor(torch.randn(2, 3)), torch.randn(2, 3)]: colo_model_data_tensor_move_inline(t, get_current_device()) assert t.device == get_current_device() def _run_colo_model_data_tensor_move(): for t in [(StatefulTensor(torch.ones(2, 3)), StatefulTensor(torch.zeros(2, 3).to(get_current_device()))), (torch.ones(2, 3), torch.zeros(2, 3).to(get_current_device()))]: cpu_t, cuda_t = t colo_model_data_tensor_move(cpu_t, cuda_t) assert cuda_t.device == get_current_device() def _run_colo_model_data_move_to_cpu(): for t in [StatefulTensor(torch.randn(2, 2)), torch.randn(4, 4)]: colo_model_data_move_to_cpu(t) assert t.device == torch.device("cpu") def _run_colo_model_tensor_clone(): for t in [ StatefulTensor(torch.randn(2, 2).cuda(torch.cuda.current_device())), torch.randn(4, 4).cuda(torch.cuda.current_device()) ]: if issubclass(type(t), StatefulTensor): assert t.payload.device == get_current_device() else: assert t.device == get_current_device() p = colo_model_tensor_clone(t, get_current_device()) assert p.device == get_current_device() for i in range(2): for j in range(2): if issubclass(type(t), StatefulTensor): assert t.payload.device == p.device assert t.payload[i][j] == p[i][j] else: assert t.device == p.device assert t[i][j] == p[i][j] def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') _run_colo_tensor_mem_usage() _run_colo_model_data_tensor_move_inline() _run_colo_model_data_tensor_move() _run_colo_model_data_move_to_cpu() _run_colo_model_tensor_clone() @pytest.mark.dist @pytest.mark.parametrize("world_size", [4, 5]) @rerun_if_address_is_in_use() def test_zero_tensor_utils(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_zero_tensor_utils(world_size=2)