import os from functools import partial import pytest import torch import torch.multiprocessing as mp import colossalai from colossalai.nn.parallel.utils import convert_to_torch_module from colossalai.tensor import ColoTensor from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test.registry import non_distributed_component_funcs @parameterize('model_name', ['resnet18', 'bert']) def run_convert_torch_module(model_name: str): get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, _, _, _, _ = get_components_func() with ColoInitContext(device='cpu'): model = model_builder(checkpoint=False) from colossalai.nn.parallel import GeminiDDP model = GeminiDDP(model, device=get_current_device(), placement_policy='auto', pin_memory=True) pytorch_model = convert_to_torch_module(model) for n, p in pytorch_model.named_parameters(): assert not isinstance(p, ColoTensor) def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_convert_torch_module() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_convert_torch_module(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_convert_torch_module(2)