import os import pytest import torch import colossalai from colossalai.logging import disable_existing_loggers from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor from colossalai.testing import ( assert_hf_output_close, clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn, ) from tests.kit.model_zoo import model_zoo from tests.test_shardformer.test_model._utils import build_model, check_state_dict, run_forward def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn): # check forward # the value "past_key_values" is sharded, so we ignore org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn) assert_hf_output_close(org_output, shard_output, ignore_keys=['past_key_values']) # do backward org_loss.backward() shard_loss.backward() assert torch.allclose(org_loss, shard_loss, atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}" # check attention grad org_grad = org_model.encoder.block[0].layer[0].SelfAttention.q.weight.grad shard_grad = sharded_model.encoder.block[0].layer[0].SelfAttention.q.weight.grad shard_weight = sharded_model.encoder.block[0].layer[0].SelfAttention.q.weight if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight): shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)] shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad) all_shard_grad = torch.cat(shard_grad_list, dim=0) else: all_shard_grad = shard_grad assert torch.allclose(org_grad, all_shard_grad, atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}" # check self attention embed org_grad = org_model.encoder.block[0].layer[0].SelfAttention.relative_attention_bias.weight.grad shard_grad = sharded_model.encoder.block[0].layer[0].SelfAttention.relative_attention_bias.weight.grad shard_weight = sharded_model.encoder.block[0].layer[0].SelfAttention.relative_attention_bias.weight if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight): shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)] torch.distributed.all_gather(shard_grad_list, shard_grad) all_shard_grad = torch.cat(shard_grad_list, dim=1) else: all_shard_grad = shard_grad assert torch.allclose(org_grad, all_shard_grad, atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}" # check token embedding grad org_grad = org_model.shared.weight.grad # check weights are tied if hasattr(org_model, 'lm_head'): assert org_model.shared.weight.data.data_ptr() == org_model.lm_head.weight.data.data_ptr() assert sharded_model.shared.weight.data.data_ptr() == sharded_model.lm_head.weight.data.data_ptr() shard_grad = sharded_model.shared.weight.grad shard_weight = sharded_model.shared.weight if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight): shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)] torch.distributed.all_gather(shard_grad_list, shard_grad) all_shard_grad = torch.cat(shard_grad_list, dim=0) else: all_shard_grad = shard_grad assert torch.allclose(org_grad, all_shard_grad, atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}" @parameterize('enable_fused_normalization', [True, False]) @parameterize('enable_tensor_parallelism', [True, False]) @parameterize('use_lazy_init', [False, True]) def run_t5_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init): sub_model_zoo = model_zoo.get_sub_registry('transformers_t5') for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items(): org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism, use_lazy_init) check_state_dict(org_model, sharded_model, name=name) check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn) torch.cuda.empty_cache() def check_t5(rank, world_size, port): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_t5_test() @pytest.mark.dist @rerun_if_address_is_in_use() @clear_cache_before_run() def test_t5(): spawn(check_t5, 2) if __name__ == "__main__": test_t5()