import torch.nn as nn import colossalai.shardformer.layer as col_nn from .._utils import getattr_, setattr_ from ..modeling.blip2 import forward_fn from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription __all__ = ['BlipPolicy', 'BlipModelPolicy'] class BlipPolicy(Policy): def config_sanity_check(self): pass def preprocess(self): # reshape the embedding layer r""" Reshape the Embedding layer to make the embedding dimension divisible by world_size """ # TODO: vocab_size = self.model.config.qformer_config.vocab_size world_size = self.shard_config.tensor_parallel_size if vocab_size % world_size != 0: new_vocab_size = vocab_size + world_size - vocab_size % world_size self.model.resize_token_embeddings(new_vocab_size) return self.model def module_policy(self): from transformers.models.blip_2.modeling_blip_2 import ( Blip2Attention, Blip2EncoderLayer, Blip2QFormerLayer, Blip2QFormerModel, Blip2VisionModel, ) from transformers.models.opt.modeling_opt import OPTDecoderLayer, OPTForCausalLM policy = {} if self.shard_config.enable_tensor_parallelism: policy[Blip2EncoderLayer] = ModulePolicyDescription(attribute_replacement={ "self_attn.num_heads": self.model.config.vision_config.num_attention_heads // self.shard_config.tensor_parallel_size, "self_attn.embed_dim": self.model.config.vision_config.hidden_size // self.shard_config.tensor_parallel_size, }, sub_module_replacement=[ SubModuleReplacementDescription( suffix="self_attn.dropout", target_module=col_nn.DropoutForParallelInput, ), SubModuleReplacementDescription( suffix="self_attn.qkv", target_module=col_nn.FusedLinear1D_Col, kwargs={ "n_fused": 3, }), SubModuleReplacementDescription( suffix="self_attn.projection", target_module=col_nn.Linear1D_Row, ), SubModuleReplacementDescription( suffix="mlp.fc1", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="mlp.fc2", target_module=col_nn.Linear1D_Row, ), ]) policy[Blip2QFormerModel] = ModulePolicyDescription(sub_module_replacement=[ SubModuleReplacementDescription( suffix="dropout", target_module=col_nn.DropoutForParallelInput, ), ]) policy[Blip2QFormerLayer] = ModulePolicyDescription(attribute_replacement={ "attention.attention.num_attention_heads": self.model.config.qformer_config.num_attention_heads // self.shard_config.tensor_parallel_size, "attention.attention.all_head_size": self.model.config.qformer_config.hidden_size // self.shard_config.tensor_parallel_size, "crossattention.attention.num_attention_heads": self.model.config.qformer_config.num_attention_heads // self.shard_config.tensor_parallel_size, "crossattention.attention.all_head_size": self.model.config.qformer_config.hidden_size // self.shard_config.tensor_parallel_size, }, sub_module_replacement=[ SubModuleReplacementDescription( suffix="attention.attention.query", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="attention.attention.key", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="attention.attention.value", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="attention.attention.dropout", target_module=col_nn.DropoutForParallelInput, ), SubModuleReplacementDescription( suffix="attention.output.dense", target_module=col_nn.Linear1D_Row, ), SubModuleReplacementDescription( suffix="attention.output.dropout", target_module=col_nn.DropoutForParallelInput, ), SubModuleReplacementDescription( suffix="crossattention.attention.query", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="crossattention.attention.key", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="crossattention.attention.value", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="crossattention.attention.dropout", target_module=col_nn.DropoutForParallelInput, ), SubModuleReplacementDescription( suffix="crossattention.output.dense", target_module=col_nn.Linear1D_Row, ), SubModuleReplacementDescription( suffix="crossattention.output.dropout", target_module=col_nn.DropoutForParallelInput, ), SubModuleReplacementDescription( suffix="intermediate_query.dense", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="output_query.dense", target_module=col_nn.Linear1D_Row, ), SubModuleReplacementDescription( suffix="output_query.dropout", target_module=col_nn.DropoutForParallelInput, ) ]) policy[OPTDecoderLayer] = ModulePolicyDescription(attribute_replacement={ "self_attn.embed_dim": self.model.config.text_config.hidden_size // self.shard_config.tensor_parallel_size, "self_attn.num_heads": self.model.config.text_config.num_attention_heads // self.shard_config.tensor_parallel_size }, sub_module_replacement=[ SubModuleReplacementDescription( suffix="self_attn.q_proj", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="self_attn.k_proj", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="self_attn.v_proj", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="self_attn.out_proj", target_module=col_nn.Linear1D_Row, ), SubModuleReplacementDescription( suffix="fc1", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="fc2", target_module=col_nn.Linear1D_Row, ) ]) policy[OPTForCausalLM] = ModulePolicyDescription(sub_module_replacement=[ SubModuleReplacementDescription( suffix="model.decoder.embed_tokens", target_module=col_nn.VocabParallelEmbedding1D, ), SubModuleReplacementDescription( suffix="lm_head", target_module=col_nn.Linear1D_Col, kwargs={"gather_output": True}, ), ]) policy[Blip2Attention] = ModulePolicyDescription(method_replacement={"forward": forward_fn()}) # optimization configuration if self.shard_config.enable_fused_normalization: # Handle Blip2EncoderLayer layer self.append_or_create_submodule_replacement(description=[ SubModuleReplacementDescription( suffix="layer_norm1", target_module=col_nn.FusedLayerNorm, ), SubModuleReplacementDescription( suffix="layer_norm2", target_module=col_nn.FusedLayerNorm, ) ], policy=policy, target_key=Blip2EncoderLayer) # handle Blip2VisionModel layer self.append_or_create_submodule_replacement(description=[ SubModuleReplacementDescription( suffix="post_layernorm", target_module=col_nn.FusedLayerNorm, ) ], policy=policy, target_key=Blip2VisionModel) # handle Blip2VisionModel layer self.append_or_create_submodule_replacement( description=[SubModuleReplacementDescription( suffix="layernorm", target_module=col_nn.FusedLayerNorm, )], policy=policy, target_key=Blip2QFormerModel) # handle Blip2QFormerLayer layer self.append_or_create_submodule_replacement(description=[ SubModuleReplacementDescription( suffix="attention.output.LayerNorm", target_module=col_nn.FusedLayerNorm, ), SubModuleReplacementDescription( suffix="crossattention.output.LayerNorm", target_module=col_nn.FusedLayerNorm, ), SubModuleReplacementDescription( suffix="output_query.LayerNorm", target_module=col_nn.FusedLayerNorm, ) ], policy=policy, target_key=Blip2QFormerLayer) # handle OPTForCausalLM layer self.append_or_create_submodule_replacement(description=[ SubModuleReplacementDescription( suffix="model.decoder.final_layer_norm", target_module=col_nn.FusedLayerNorm, ) ], policy=policy, target_key=OPTForCausalLM) # handle OPTDecoderLayer layer self.append_or_create_submodule_replacement(description=[ SubModuleReplacementDescription( suffix="self_attn_layer_norm", target_module=col_nn.FusedLayerNorm, ), SubModuleReplacementDescription( suffix="final_layer_norm", target_module=col_nn.FusedLayerNorm, ) ], policy=policy, target_key=OPTDecoderLayer) return policy def postprocess(self): binding_map = { 'language_model.model.decoder.embed_tokens': 'language_model.lm_head', } for k, v in binding_map.items(): src_mod = getattr_(self.model, k) dst_mod = getattr_(self.model, v) dst_mod.weight = src_mod.weight return self.model # Blip2Model class Blip2ModelPolicy(BlipPolicy): def __init__(self) -> None: super().__init__() # Blip2ForConditionalGeneration class Blip2ForConditionalGenerationPolicy(BlipPolicy): def __init__(self) -> None: super().__init__()