import pytest import torch import torch.distributed as dist import colossalai from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn from colossalai.utils import set_seed from colossalai.zero import GeminiDDP from colossalai.zero.gemini.chunk import search_chunk_configuration from colossalai.zero.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer from tests.kit.model_zoo import model_zoo, run_fwd_bwd # run gemini use the runtime memory tracer @parameterize("placement_policy", ["auto"]) @parameterize("keep_gather", [False]) @parameterize("model_name", ["transformers_bert_for_sequence_classification"]) @parameterize("use_grad_checkpoint", [False, True]) def run_gemini_use_rmt(placement_policy, keep_gather, model_name: str, use_grad_checkpoint: bool = False): set_seed(42) model_builder, data_gen_fn, output_transform_fn, *_ = next(iter(model_zoo.get_sub_registry(model_name).values())) model = model_builder().cuda() if use_grad_checkpoint: model.gradient_checkpointing_enable() print(f"model_name {model_name}") runtime_mem_tracer = RuntimeMemTracer(model) data = data_gen_fn() data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()} run_fwd_bwd(runtime_mem_tracer, data, output_transform_fn, optimizer=runtime_mem_tracer) memstats = runtime_mem_tracer.memstats() runtime_tracer_non_model_data = runtime_mem_tracer._memstats._non_model_data_cuda_list print("runtime tracer non model data points: ", len(runtime_tracer_non_model_data)) print("runtime tracer: ", runtime_tracer_non_model_data) print([memstats.param_used_step(p) for p in model.parameters()]) if model_name == "repeated_computed_layers": for idx, p in enumerate(model.parameters()): step_list = memstats.param_used_step(p) if idx < 4: assert len(step_list) == 4 if model_name == "repeated_computed_layers": for idx, p in enumerate(model.parameters()): step_list = memstats.param_used_step(p) if idx < 4: assert len(step_list) == 4 world_size = torch.distributed.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) config_dict[world_size]["chunk_size"] = 5000 config_dict[world_size]["keep_gathered"] = keep_gather model = GeminiDDP( model, chunk_config_dict=config_dict, placement_policy=placement_policy, pin_memory=True, memstats=memstats ) set_seed(dist.get_rank()) train_dataloader = DummyDataloader(data_gen_fn) for i, data in enumerate(train_dataloader): # you can only test a single fwd + bwd. # after bwd param is grad for Gemini, due to the chunk reuse optimization. # print(f'iteration {i}') if i > 4: break data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()} set_seed(42) run_fwd_bwd(model, data, output_transform_fn, optimizer=model) gemini_non_model_data = model.gemini_manager._mem_stats_collector._memstats.non_model_data_list("cuda") # print('gemini non model data:', gemini_non_model_data) assert len(gemini_non_model_data) == len( runtime_tracer_non_model_data ), f"model_name {model_name} {len(gemini_non_model_data)} vs {len(runtime_tracer_non_model_data)}" def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") run_gemini_use_rmt() @pytest.mark.skip("this is not used") @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 4]) @rerun_if_address_is_in_use() def test_gemini_use_rmt(world_size): spawn(run_dist, world_size) if __name__ == "__main__": test_gemini_use_rmt(1)