import os from functools import partial from pathlib import Path import colossalai import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.core import global_context as gpc from colossalai.logging import get_dist_logger from colossalai.utils import free_port, get_dataloader from torch.optim import Adam from torchvision import transforms from torchvision.datasets import CIFAR10 from torchvision.models import resnet18 # Config BATCH_SIZE = 2 NUM_CLASSES = 10 CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)), clip_grad_norm=1.0, gradient_accumulation=4) def run_no_pipeline(rank, world_size, port): # init dist env colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') # build model model = resnet18(num_classes=10) # build dataloaders train_dataset = CIFAR10(root=Path(os.environ['DATA']), download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ])) train_dataloader = get_dataloader(dataset=train_dataset, shuffle=True, batch_size=BATCH_SIZE, pin_memory=True, drop_last=True) # build optimizer optimizer = Adam(model.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss() engine, train_dataloader, *args = colossalai.initialize(model=model, optimizer=optimizer, criterion=criterion, train_dataloader=train_dataloader) logger = get_dist_logger() rank = torch.distributed.get_rank() param_track = [] grad_track = [] next(model.parameters()).retain_grad() engine.train() step = 0 for img, label in train_dataloader: engine.zero_grad() img = img.cuda() label = label.cuda() output = engine(img) loss = engine.criterion(output, label) engine.backward(loss) engine.step() # check param_track.append(next(model.parameters())[0].clone()) grad_track.append(next(model.parameters()).grad[0].clone()) step += 1 if step == CONFIG['gradient_accumulation']: break assert not torch.all(grad_track[0] == grad_track[-1]), 'grad should be different in different iterations' assert torch.all(param_track[0] == param_track[1]) and not torch.all(param_track[0] == param_track[-1]), \ 'param should be the same in the first few iterations and only changed in the last iteration' gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist def test_engine(): world_size = 4 func = partial(run_no_pipeline, world_size=world_size, port=free_port()) mp.spawn(func, nprocs=world_size) if __name__ == '__main__': test_engine()