import json import os from typing import Any, Dict, Optional, Union import torch import torch.nn.functional as F def get_model_numel(model: torch.nn.Module) -> int: return sum(p.numel() for p in model.parameters()) def compute_reward( r: Union[torch.Tensor, float], kl_coef: float, log_probs: torch.Tensor, log_probs_base: torch.Tensor, action_mask: Optional[torch.Tensor] = None, reward_eps=5, ) -> torch.Tensor: """ Args: log_probs: [batch_size, response_length] log_probs_base: [batch_size, response_length] action_mask: [batch_size, response_length] r: float Returns: reward: [batch_size, response_length] """ log_ratio = log_probs - log_probs_base # address numerical instability issue kl = -kl_coef * log_ratio * action_mask reward = kl r_clip = torch.clamp(r, -reward_eps, reward_eps) for i in range(action_mask.size(0)): assert action_mask[i].sum() > 0 reward[i, : action_mask[i].sum()] += r_clip[i] reward[i, action_mask[i].sum() :] *= 0 return reward, ((log_ratio * (log_ratio < 10)).exp() - 1 - log_ratio) * action_mask def _log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor: """ Compute the log probabilities from logits for the given labels. Args: logits (torch.Tensor): The input logits. labels (torch.Tensor): The target labels. Returns: torch.Tensor: The log probabilities corresponding to the labels. """ log_probs = F.log_softmax(logits, dim=-1) log_probs_labels = log_probs.gather(dim=-1, index=labels.unsqueeze(-1)) return log_probs_labels.squeeze(-1) def calc_action_log_probs(logits: torch.Tensor, sequences: torch.LongTensor, num_actions: int) -> torch.Tensor: """Calculate action log probs. Args: output (torch.Tensor): Output tensor of Actor.forward.logits. sequences (torch.LongTensor): Input sequences. num_actions (int): Number of actions. Returns: torch.Tensor: Action log probs. """ log_probs = _log_probs_from_logits(logits[:, :-1, :], sequences[:, 1:]) return log_probs[:, -num_actions:] def masked_mean(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1) -> torch.Tensor: """ Compute the masked mean of a tensor along a specified dimension. Args: tensor (torch.Tensor): The input tensor. mask (torch.Tensor): The mask tensor with the same shape as the input tensor. dim (int, optional): The dimension along which to compute the mean. Default is 1. Returns: torch.Tensor: The masked mean tensor. """ tensor = tensor * mask tensor = tensor.sum(dim=dim) mask_sum = mask.sum(dim=dim) mean = tensor / (mask_sum + 1e-8) return mean def calc_masked_log_probs(logits: torch.Tensor, sequences: torch.LongTensor, mask: torch.Tensor) -> torch.Tensor: """ Calculate the masked log probabilities for a given sequence of logits. Args: logits (torch.Tensor): The input logits tensor of shape (batch_size, sequence_length, vocab_size). sequences (torch.LongTensor): The input sequence tensor of shape (batch_size, sequence_length). mask (torch.Tensor): The mask tensor of shape (batch_size, sequence_length). Returns: torch.Tensor: The masked log probabilities tensor of shape (batch_size, sequence_length - 1). """ # logits are probabilities of the next token, so we shift them to the left by one log_probs = _log_probs_from_logits(logits[:, :-1, :], sequences[:, 1:]) return log_probs * mask def load_json(file_path: Union[str, os.PathLike]) -> Dict[str, Any]: """ Load file in JSON format """ with open(file=file_path, mode="r", encoding="utf-8") as fp: return json.load(fp) def save_json(data: Dict[str, Any], file_path: Union[str, os.PathLike]) -> None: """ Save as JSON format """ with open(file=file_path, mode="w", encoding="utf-8") as fp: json.dump(data, fp=fp, ensure_ascii=False, indent=4) def disable_dropout(model: torch.nn.Module): """ Disables dropout in a PyTorch model. This is used in PPO Training Args: model (torch.nn.Module): The PyTorch model. Returns: None """ for module in model.modules(): if isinstance(module, torch.nn.Dropout): module.p = 0.0