import torch import torch.distributed as dist from colossalai.constants import INPUT_GROUP_3D, WEIGHT_GROUP_3D, OUTPUT_GROUP_3D from colossalai.core import global_context as gpc from colossalai.nn.layer.parallel_3d import reduce_by_batch_3d, split_tensor_3d from colossalai.nn.layer.parallel_3d._utils import get_parallel_mode_from_env from colossalai.registry import LOSSES from colossalai.utils import get_current_device from torch.cuda.amp import custom_bwd, custom_fwd from torch.nn.functional import cross_entropy from torch.nn.modules.loss import _Loss @LOSSES.register_module class CrossEntropyLoss3D(_Loss): r"""Cross entropy loss for 3D parallelism. Args: reduction (bool, optional): whether to average the loss, defaults to True. The ``args`` and ``kwargs`` should include parameters below: :: weight (Tensor, optional) size_average (bool, optional) ignore_index (int, optional) reduce (bool, optional) label_smoothing (float, optional) More details about ``args``, ``kwargs`` and ``torch.nn.functional.cross_entropy`` could be found in `Cross_entropy `_. """ def __init__(self, reduction=True, *args, **kwargs): super().__init__() self.input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) self.weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) self.reduction_mean = reduction self.loss_args = args self.loss_kwargs = kwargs def forward(self, logits, targets): """Calculate loss between logits and targets. Args: logits (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits). targets (:class:`torch.tensor`): Ground truth class indices or class probabilities. """ targets = split_tensor_3d(targets, 0, self.weight_parallel_mode) targets = split_tensor_3d(targets, 0, self.input_parallel_mode) loss = cross_entropy(logits, targets, reduction='none', *self.loss_args, **self.loss_kwargs) if self.reduction_mean: loss = loss.mean() loss = reduce_by_batch_3d(loss, self.input_parallel_mode, self.weight_parallel_mode, True) return loss class _VocabParallelCrossEntropy3D(torch.autograd.Function): # Adapted from megatron.mpu.cross_entropy # loss[i] = -logits[i][targets] + log(sum(exp(logits[i]))) @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward(ctx, logits, targets, output_parallel_mode): # logits: [b/q^2, c/q] # labels: [b/q^2] # loss: [b/q^2] logits_max = torch.max(logits, dim=-1)[0] dist.all_reduce(logits_max, op=torch.distributed.ReduceOp.MAX, group=gpc.get_group(output_parallel_mode)) # Subtract the maximum value. logits = logits - logits_max.unsqueeze(dim=-1) vocab_size_per_partition = logits.size()[-1] rank = gpc.get_local_rank(output_parallel_mode) vocab_start = rank * vocab_size_per_partition vocab_end = (rank + 1) * vocab_size_per_partition - 1 # loss[i] = 0 if targets[i] < vocab_start or targets[i] > vocab_end target_mask = (targets < vocab_start) | (targets > vocab_end) masked_target = targets.clone() - vocab_start masked_target[target_mask] = 0 arange_1d = torch.arange(start=0, end=logits.size()[0], device=get_current_device()) predicted_logits = logits[arange_1d, masked_target] predicted_logits = predicted_logits.clone().contiguous().view_as(targets) predicted_logits[target_mask] = 0. dist.all_reduce(predicted_logits, group=gpc.get_group(output_parallel_mode)) # Loss = log(sum(exp(logits))) - predicted-logit. exp_logits = torch.exp(logits) sum_exp_logits = exp_logits.sum(dim=-1) dist.all_reduce(sum_exp_logits, group=gpc.get_group(output_parallel_mode)) loss = torch.log(sum_exp_logits) - predicted_logits exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1)) ctx.save_for_backward(exp_logits, target_mask, masked_target) return loss @staticmethod @custom_bwd def backward(ctx, output_grad): # Retrieve tensors from the forward path. softmax, target_mask, masked_target = ctx.saved_tensors # All the inputs have softmax as their gradient. input_grad = softmax # For simplicity, work with the 2D gradient. partition_vocab_size = softmax.size()[-1] grad_2d = input_grad.view(-1, partition_vocab_size) # Add the gradient from matching classes. arange_1d = torch.arange(start=0, end=grad_2d.size()[0], device=get_current_device()) grad_2d[arange_1d, masked_target] -= (1.0 - target_mask.view(-1).float()) input_grad.mul_(output_grad.unsqueeze(dim=-1)) return input_grad, None, None, None @LOSSES.register_module class VocabParallelCrossEntropyLoss3D(_Loss): """Vocab parallel cross entropy loss for 2D parallelism. Args: reduction (bool, optional): whether to average the loss, defaults to True. """ def __init__(self, reduction=True): super().__init__() self.input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D) self.weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D) self.output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D) self.reduction_mean = reduction def forward(self, logits, targets): """Calculate loss between logits and targets. Args: logits (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits). targets (:class:`torch.tensor`): Ground truth class indices or class probabilities. """ targets = split_tensor_3d(targets, 0, self.weight_parallel_mode) targets = split_tensor_3d(targets, 0, self.input_parallel_mode) loss = _VocabParallelCrossEntropy3D.apply(logits, targets, self.output_parallel_mode) if self.reduction_mean: loss = loss.mean() loss = reduce_by_batch_3d(loss, self.input_parallel_mode, self.weight_parallel_mode, True) return loss