# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from typing import Tuple, Union import torch from ..registry import meta_profiler_module @meta_profiler_module.register(torch.nn.InstanceNorm1d) @meta_profiler_module.register(torch.nn.InstanceNorm2d) @meta_profiler_module.register(torch.nn.InstanceNorm3d) @meta_profiler_module.register(torch.nn.LayerNorm) @meta_profiler_module.register(torch.nn.GroupNorm) @meta_profiler_module.register(torch.nn.BatchNorm1d) @meta_profiler_module.register(torch.nn.BatchNorm2d) @meta_profiler_module.register(torch.nn.BatchNorm3d) def torch_nn_normalize(self: Union[torch.nn.LayerNorm, torch.nn.GroupNorm, torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d], input: torch.Tensor) -> Tuple[int, int]: # adopted from https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/profiling/flops_profiler/profiler.py#L615 has_affine = self.weight is not None if self.training: flops = input.numel() * (2 if has_affine else 1) else: flops = input.numel() * (5 if has_affine else 4) macs = 0 return flops, macs try: import apex meta_profiler_module.register(apex.normalization.FusedLayerNorm)(torch_nn_normalize) meta_profiler_module.register(apex.normalization.FusedRMSNorm)(torch_nn_normalize) meta_profiler_module.register(apex.normalization.MixedFusedLayerNorm)(torch_nn_normalize) meta_profiler_module.register(apex.normalization.MixedFusedRMSNorm)(torch_nn_normalize) except (ImportError, AttributeError): pass