from typing import List, Tuple import torch from colossalai._analyzer._subclasses.flop_tensor import flop_mapping from colossalai._analyzer.fx.node_util import compute_size_in_bytes as activation_size from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem from ..registry import meta_register __all__ = ["where_meta_info"] @meta_register.register(torch.where) def where_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: """torch.where meta information generator Returns: Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs """ condition_tensor, x_tensor, y_tensor, output_tensor = [arg.data for arg in args] # compute cost fwd_compute_cost = 0 # if we need to broadcast the condition tensor, during backward we need to do a reduce_sum bwd_compute_cost = 0 if x_tensor.shape != output_tensor.shape: bwd_compute_cost += flop_mapping[torch.ops.aten.sum.dim_IntList]([output_tensor], [x_tensor]) if y_tensor.shape != output_tensor.shape: bwd_compute_cost += flop_mapping[torch.ops.aten.sum.dim_IntList]([output_tensor], [y_tensor]) compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost) # memory cost # during the forward phase, torch.where will allocate memory for output tensor and condition tensor # during the backward phase, torch.where will allocate temp memory which is 3 times as output tensor, then generate # gradient matrix for input x and input y, remove the temp memory and condition tensor generated in forward phase # NOTE: currently in SPMD solver we always believe that there will be a new input tensor created in forward fwd_mem_cost = MemoryCost(activation=activation_size([condition_tensor, x_tensor, y_tensor, output_tensor])) bwd_mem_cost = MemoryCost(activation=activation_size([x_tensor, y_tensor]) - activation_size([condition_tensor]), parameter=0, temp=activation_size([output_tensor]) * 3 + activation_size([condition_tensor]) - activation_size([x_tensor, y_tensor]), buffer=0) total_mem_cost = MemoryCost(activation=fwd_mem_cost.activation + bwd_mem_cost.activation, parameter=fwd_mem_cost.parameter + bwd_mem_cost.parameter, temp=fwd_mem_cost.temp + bwd_mem_cost.temp, buffer=fwd_mem_cost.buffer + bwd_mem_cost.buffer) memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost) # store fwd_in, fwd_buffer, fwd_out fwd_in = [condition_tensor] fwd_buffer = [] fwd_out = [output_tensor] return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out