import torch from colossalai.tensor.op_wrapper import colo_op_impl from colossalai.context import ParallelMode from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, reduce_input, \ gather_forward_split_backward, reduce_grad from colossalai.nn.layer.utils import divide from colossalai.core import global_context as gpc from packaging import version from colossalai.tensor import ComputePattern, TensorSpec, ComputePattern, ParallelAction, ColoTensor, ShardPattern def colo_embedding_1Dcol(input_tensor: ColoTensor, weight: ColoTensor, args, kwargs) -> ColoTensor: # embedding_1Dcol split the weight(lookup table) to (num_embeddings, embedding_dim/P) # Gather splitted lookup table parallel_action = weight.shard_spec.get_action_by_compute_pattern(ComputePattern.TP1DCol_Embedding) if not input_tensor.is_gathered(): input_tensor.gather() output_parallel = torch.nn.functional.embedding(input_tensor.torch_tensor(), weight.torch_tensor(), *args, **kwargs) output = ColoTensor.init_from_torch_tensor(output_parallel) out_parallel_action_list = [ParallelAction(priority=1, parallel_mode=parallel_action.parallel_mode)] output_spec = TensorSpec(out_parallel_action_list) output.set_spec(output_spec, shard=False) output.set_shard_pattern(ShardPattern.Col) output.gather() return output def colo_embedding_1Drow(input_tensor: ColoTensor, weight: ColoTensor, args, kwargs) -> ColoTensor: # embedding_1Drow split the weight(lookup table) to (num_embeddings/P, embedding_dim) # Find index in this shard and mask those not here # Reduce all parallel_action = weight.shard_spec.get_action_by_compute_pattern(ComputePattern.TP1DRow_Embedding) if not input_tensor.is_gathered(): input_tensor.gather() tensor_parallel_rank = gpc.get_local_rank(parallel_action.parallel_mode) num_embeddings_per_partition = weight.size(0) vocab_start_index = tensor_parallel_rank * num_embeddings_per_partition vocab_end_index = vocab_start_index + num_embeddings_per_partition # Build the mask. input_mask = (input_tensor.torch_tensor() < vocab_start_index) | \ (input_tensor.torch_tensor() >= vocab_end_index) # Mask the input. # TODO(jzy) masked_input may be an activation managed by ColoTensor. masked_input = input_tensor.torch_tensor().clone() - vocab_start_index masked_input[input_mask] = 0 partial_output = torch.nn.functional.embedding(masked_input, weight.torch_tensor(), *args, **kwargs) # Mask the output embedding. partial_output[input_mask, :] = 0. # Reduce across all the model parallel GPUs. output = reduce_input(partial_output, parallel_action.parallel_mode) output = ColoTensor.init_from_torch_tensor(output) return output @colo_op_impl(torch.nn.functional.embedding) def colo_embedding(types, args, kwargs, pg): """Handles ``__torch_function__`` dispatch for ``torch.nn.functional.embedding``. This method looks up an embedding table. """ input_tensor = args[0] weight = args[1] args = args[2:] if not isinstance(input_tensor, ColoTensor): input_tensor = ColoTensor.init_from_torch_tensor(input_tensor) if not isinstance(weight, ColoTensor): weight = ColoTensor.init_from_torch_tensor(weight) # Handle differen parallel actions. if not weight.has_spec(): # No Model Parallel Applied input_tensor = input_tensor.torch_tensor() weight = weight.torch_tensor() output = torch.nn.functional.embedding(input_tensor, weight, *args, **kwargs) return ColoTensor.init_from_torch_tensor(output) elif weight.shard_spec.num_action == 1: # Single Model Parallel Applied compute_patterns = weight.shard_spec.compute_patterns if ComputePattern.TP1DRow_Embedding in compute_patterns: return colo_embedding_1Drow(input_tensor, weight, args, kwargs) elif ComputePattern.TP1DCol_Embedding in compute_patterns: return colo_embedding_1Dcol(input_tensor, weight, args, kwargs) else: raise NotImplementedError else: raise NotImplementedError