import torch from torch.fx import GraphModule import torch.nn as nn import pytest from colossalai.fx.tracer.tracer import ColoTracer from colossalai.tensor.shape_consistency import ShapeConsistencyManager from colossalai.device.device_mesh import DeviceMesh from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor from colossalai.auto_parallel.solver.cost_graph import CostGraph from colossalai.auto_parallel.solver.graph_analysis import GraphAnalyser from copy import deepcopy from colossalai.auto_parallel.solver import Solver class ConvModel(nn.Module): def __init__(self, c_in, c_out): super().__init__() self.conv1 = nn.Conv2d(c_in, c_out, kernel_size=3) self.conv2 = nn.Conv2d(c_out, c_out, kernel_size=3) self.conv3 = nn.Conv2d(c_out, c_out, kernel_size=3) self.relu = nn.ReLU() def forward(self, x): x = x * 2 x = self.conv1(x) x = self.conv2(x) x = x / 2 x = self.conv3(x) x = self.relu(x) return x @pytest.mark.skip("for higher testing speed") def test_solver(): physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) entire_shape = torch.Size((4, 16, 64, 64)) shape_consistency_manager = ShapeConsistencyManager() tracer = ColoTracer() model = ConvModel(16, 32) input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')} # graph(): # %x : torch.Tensor [#users=1] = placeholder[target=x] # %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {}) # %conv1 : [#users=1] = call_module[target=conv1](args = (%mul,), kwargs = {}) # %conv2 : [#users=1] = call_module[target=conv2](args = (%conv1,), kwargs = {}) # %truediv : [#users=1] = call_function[target=operator.truediv](args = (%conv2, 2), kwargs = {}) # %conv3 : [#users=1] = call_module[target=conv3](args = (%truediv,), kwargs = {}) # %relu : [#users=1] = call_module[target=relu](args = (%conv3,), kwargs = {}) # return relu graph = tracer.trace(root=model, meta_args=input_sample) gm = GraphModule(model, graph, model.__class__.__name__) gm.recompile() solver_options = {'fast_mode': True} strategies_constructor = StrategiesConstructor(graph, device_mesh, shape_consistency_manager, solver_options) strategies_constructor.build_strategies_and_cost() cost_graph = CostGraph(strategies_constructor.leaf_strategies) cost_graph.simplify_graph() graph_analyser = GraphAnalyser(gm) solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser) ret = solver.call_solver_serialized_args() # [ 0 0 13 13 13 13 13 0] strategies_combination_list = ret[0] assert solver.leaf_strategies[2][13].name == 'S01R = S01R x RR' if __name__ == '__main__': test_solver()